
zenoh-pico
Release 0.6.0-beta.1

ZettaScale Zenoh team

Sep 30, 2022

CONTENTS

1 API Reference 3
1.1 Zenoh Types . 3

1.1.1 Enums . 3
1.1.2 Data Structures . 6
1.1.3 Arrays . 11
1.1.4 Owned Types . 11
1.1.5 Closures . 12

1.2 Zenoh Functions . 13
1.2.1 Macros . 13
1.2.2 Primitives . 14

Index 33

i

ii

zenoh-pico, Release 0.6.0-beta.1

The libzenoh-pico library provides a C client API for the zenoh protocol.

CONTENTS 1

zenoh-pico, Release 0.6.0-beta.1

2 CONTENTS

CHAPTER

ONE

API REFERENCE

1.1 Zenoh Types

1.1.1 Enums

enum z_whatami_t
Whatami values, defined as a bitmask.

enumerator Z_WHATAMI_ROUTER
Bitmask to filter Zenoh routers.

enumerator Z_WHATAMI_PEER
Bitmask to filter for Zenoh peers.

enumerator Z_WHATAMI_CLIENT
Bitmask to filter for Zenoh clients.

enum zp_keyexpr_canon_status_t
Status values for keyexpr canonization operation. Used as return value of canonization-related functions, like
z_keyexpr_is_canon() or z_keyexpr_canonize().

enumerator Z_KEYEXPR_CANON_SUCCESS
The key expression is canon.

enumerator Z_KEYEXPR_CANON_LONE_DOLLAR_STAR
The key contains a $* chunk, which must be replaced by *.

enumerator Z_KEYEXPR_CANON_SINGLE_STAR_AFTER_DOUBLE_STAR
The key contains ** / *, which must be replaced by * / **.

enumerator Z_KEYEXPR_CANON_DOUBLE_STAR_AFTER_DOUBLE_STAR
The key contains ** / **, which must be replaced by **.

enumerator Z_KEYEXPR_CANON_EMPTY_CHUNK
The key contains empty chunks.

enumerator Z_KEYEXPR_CANON_STARS_IN_CHUNK
The key contains a * in a chunk without being escaped by a DSL, which is forbidden.

enumerator Z_KEYEXPR_CANON_DOLLAR_AFTER_DOLLAR_OR_STAR
The key contains $*$ or $$, which is forbidden.

3

zenoh-pico, Release 0.6.0-beta.1

enumerator Z_KEYEXPR_CANON_CONTAINS_SHARP_OR_QMARK
The key contains # or ?, which is forbidden.

enumerator Z_KEYEXPR_CANON_CONTAINS_UNBOUND_DOLLAR
The key contains a $ which is not bound to a DSL.

enum z_sample_kind_t
Sample kind values.

enumerator Z_SAMPLE_KIND_PUT
The Sample was issued by a put operation.

enumerator Z_SAMPLE_KIND_DELETE
The Sample was issued by a delete operation.

enum z_encoding_prefix_t
Zenoh encoding values. These values are based on already existing HTTP MIME types and extended with other
relevant encodings.

enumerator Z_ENCODING_PREFIX_EMPTY
Encoding not defined.

enumerator Z_ENCODING_PREFIX_APP_OCTET_STREAM
application/octet-stream. Default value for all other cases. An unknown file type should use this
type. Z_ENCODING_PREFIX_APP_CUSTOM: Custom application type. Non IANA standard.

enumerator Z_ENCODING_PREFIX_TEXT_PLAIN
text/plain. Default value for textual files. A textual file should be human-readable and must not con-
tain binary data. Z_ENCODING_PREFIX_APP_PROPERTIES: Application properties type. Non IANA
standard. Z_ENCODING_PREFIX_APP_JSON: application/json. JSON format.

enumerator Z_ENCODING_PREFIX_APP_SQL
Application sql type. Non IANA standard. Z_ENCODING_PREFIX_APP_INTEGER: Application inte-
ger type. Non IANA standard. Z_ENCODING_PREFIX_APP_FLOAT: Application float type. Non IANA
standard.

enumerator Z_ENCODING_PREFIX_APP_XML
application/xml. XML.

enumerator Z_ENCODING_PREFIX_APP_XHTML_XML
application/xhtml+xml. XHTML.

enumerator Z_ENCODING_PREFIX_APP_X_WWW_FORM_URLENCODED

application/x-www-form-urlencoded. The keys and values are encoded in key-value tuples sepa-
rated by ‘&’, with a ‘=’ between the key and the value.

Z_ENCODING_PREFIX_TEXT_JSON: Text JSON. Non IANA standard. Z_ENCODING_PREFIX_TEXT_HTML: text/html. HyperText
Markup Language (HTML). Z_ENCODING_PREFIX_TEXT_XML: text/xml. Applica-
tion/xml is recommended as of RFC 7303 (section 4.1), but text/xml is still used some-
times. Z_ENCODING_PREFIX_TEXT_CSS: text/css. Cascading Style Sheets (CSS).
Z_ENCODING_PREFIX_TEXT_CSV: text/csv. Comma-separated values (CSV).

enumerator Z_ENCODING_PREFIX_TEXT_JAVASCRIPT
text/javascript. JavaScript.

enumerator Z_ENCODING_PREFIX_IMAGE_JPEG
image/jpeg. JPEG images.

4 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

enumerator Z_ENCODING_PREFIX_IMAGE_PNG
image/png. Portable Network Graphics.

enumerator Z_ENCODING_PREFIX_IMAGE_GIF
image/gif. Graphics Interchange Format (GIF).

enum z_consolidation_mode_t
Consolidation mode values.

enumerator Z_CONSOLIDATION_MODE_AUTO
Let Zenoh decide the best consolidation mode depending on the query selector.

enumerator Z_CONSOLIDATION_MODE_NONE
No consolidation is applied. Replies may come in any order and any number.

enumerator Z_CONSOLIDATION_MODE_MONOTONIC
It guarantees that any reply for a given key expression will be monotonic in time w.r.t. the previous received
replies for the same key expression. I.e., for the same key expression multiple replies may be received. It
is guaranteed that two replies received at t1 and t2 will have timestamp ts2 > ts1. It optimizes latency.

enumerator Z_CONSOLIDATION_MODE_LATEST
It guarantees unicity of replies for the same key expression. It optimizes bandwidth.

enum z_reliability_t
Reliability values.

enumerator Z_RELIABILITY_BEST_EFFORT
Defines reliability as BEST_EFFORT

enumerator Z_RELIABILITY_RELIABLE
Defines reliability as RELIABLE

enum z_reply_tag_t
Reply tag values.

enumerator Z_REPLY_TAG_DATA
Tag identifying that the reply contains some data.

enumerator Z_REPLY_TAG_FINAL
Tag identifying that the reply does not contain any data and that there will be no more replies for this query.

enum z_congestion_control_t
Congestion control values.

enumerator Z_CONGESTION_CONTROL_BLOCK
Defines congestion control as BLOCK. Messages are not dropped in case of congestion control.

enumerator Z_CONGESTION_CONTROL_DROP
Defines congestion control as DROP. Messages are dropped in case of congestion control.

enum z_priority_t
Priority of Zenoh messages values.

enumerator _Z_PRIORITY_CONTROL
Priority for Control messages.

enumerator Z_PRIORITY_REAL_TIME
Priority for RealTime messages.

1.1. Zenoh Types 5

zenoh-pico, Release 0.6.0-beta.1

enumerator Z_PRIORITY_INTERACTIVE_HIGH
Highest priority for Interactive messages.

enumerator Z_PRIORITY_INTERACTIVE_LOW
Lowest priority for Interactive messages.

enumerator Z_PRIORITY_DATA_HIGH
Highest priority for Data messages.

enumerator Z_PRIORITY_DATA
Default priority for Data messages.

enumerator Z_PRIORITY_DATA_LOW
Lowest priority for Data messages.

enumerator Z_PRIORITY_BACKGROUND
Priority for Background traffic messages.

enum z_submode_t
Subscription mode values.

enumerator Z_SUBMODE_PUSH
Defines the subscription with a push paradigm.

enumerator Z_SUBMODE_PULL
Defines the subscription with a pull paradigm.

enum z_query_target_t
Query target values.

enumerator Z_QUERY_TARGET_BEST_MATCHING
The nearest complete queryable if any else all matching queryables.

enumerator Z_QUERY_TARGET_ALL
All matching queryables.

enumerator Z_QUERY_TARGET_ALL_COMPLETE
A set of complete queryables.

1.1.2 Data Structures

typedef int z_zint_t
Represents a variable-length encoding unsigned integer.

It is equivalent to the size of a size_t.

typedef int z_bytes_t
Represents an array of bytes.

size_t len
The length of the bytes array.

uint8_t *start
A pointer to the bytes array.

6 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

type z_id_t
Represents a Zenoh ID.

In general, valid Zenoh IDs are LSB-first 128bit unsigned and non-zero integers.

uint8_t id[16]
The array containing the 16 octets of a Zenoh ID.

typedef int z_string_t
Represents a string without null-terminator.

size_t len
The length of the string.

const char *val
A pointer to the string.

typedef int z_keyexpr_t
Represents a key expression in Zenoh.

Operations over z_keyexpr_t must be done using the provided functions:

• z_keyexpr()

• z_keyexpr_is_initialized()

• z_keyexpr_to_string()

• zp_keyexpr_resolve()

type z_config_t
Represents a Zenoh configuration.

Configurations are usually used to set the parameters of a Zenoh session upon its opening.

Operations over z_config_t must be done using the provided functions:

• z_config_new()

• z_config_default()

• zp_config_get()

• zp_config_insert()

type z_session_t
Represents a Zenoh session.

type z_subscriber_t
Represents a Zenoh (push) Subscriber entity.

Operations over z_subscriber_t must be done using the provided functions:

• z_declare_subscriber()

• z_undeclare_subscriber()

type z_pull_subscriber_t
Represents a Zenoh Pull Subscriber entity.

Operations over z_pull_subscriber_t must be done using the provided functions:

• z_declare_pull_subscriber()

• z_undeclare_pull_subscriber()

1.1. Zenoh Types 7

zenoh-pico, Release 0.6.0-beta.1

• z_subscriber_pull()

type z_publisher_t
Represents a Zenoh Publisher entity.

Operations over z_publisher_t must be done using the provided functions:

• z_declare_publisher()

• z_undeclare_publisher()

• z_publisher_put()

• z_publisher_delete()

type z_queryable_t
Represents a Zenoh Queryable entity.

Operations over z_queryable_t must be done using the provided functions:

• z_declare_queryable()

• z_undeclare_queryable()

typedef int z_encoding_t
Represents the encoding of a payload, in a MIME-like format.

z_encoding_prefix_t prefix
The integer prefix of this encoding.

z_bytes_t suffix
The suffix of this encoding. It MUST be a valid UTF-8 string.

type z_value_t
Represents a Zenoh value.

z_bytes_t payload
The payload of this zenoh value.

z_encoding_t encoding
The encoding of the payload.

type z_subscriber_options_t
Represents the set of options that can be applied to a (push) subscriber, upon its declaration via
z_declare_subscriber().

z_reliability_t reliability
The subscription reliability.

type z_pull_subscriber_options_t
Represents the set of options that can be applied to a pull subscriber, upon its declaration via
z_declare_pull_subscriber().

z_reliability_t reliability
The subscription reliability.

type z_query_consolidation_t
Represents the replies consolidation to apply on replies to a z_get().

z_consolidation_mode_t mode
Defines the consolidation mode to apply to the replies.

8 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

type z_publisher_options_t
Represents the set of options that can be applied to a publisher, upon its declaration via
z_declare_publisher().

z_congestion_control_t congestion_control
The congestion control to apply when routing messages from this

publisher. z_priority_t priority: The priority of messages issued by this publisher.

type z_queryable_options_t
Represents the set of options that can be applied to a queryable, upon its declaration via
z_declare_queryable().

bool complete
The completeness of the queryable.

type z_query_reply_options_t
Represents the set of options that can be applied to a query reply, sent via z_query_reply().

z_encoding_t encoding
The encoding of the payload.

type z_put_options_t
Represents the set of options that can be applied to the put operation, whenever issued via z_put().

z_encoding_t encoding
The encoding of the payload.

z_congestion_control_t congestion_control
The congestion control to apply when routing this message.

z_priority_t priority
The priority of this message when routed.

type z_delete_options_t
Represents the set of options that can be applied to the delete operation, whenever issued via z_delete().

z_congestion_control_t congestion_control
The congestion control to apply when routing this message.

z_priority_t priority
The priority of this message when router.

type z_publisher_put_options_t
Represents the set of options that can be applied to the put operation by a previously declared publisher, whenever
issued via z_publisher_put().

z_encoding_t encoding
The encoding of the payload.

type z_publisher_delete_options_t
Represents the set of options that can be applied to the delete operation by a previously declared publisher,
whenever issued via z_publisher_delete().

type z_get_options_t
Represents the set of options that can be applied to the get operation, whenever issued via z_get().

1.1. Zenoh Types 9

zenoh-pico, Release 0.6.0-beta.1

z_query_target_t target
The queryables that should be targeted by this get.

z_query_consolidation_t consolidation
The replies consolidation strategy to apply on replies.

typedef int z_sample_t
Represents a data sample.

A sample is the value associated to a given z_keyexpr_t at a given point in time.

z_keyexpr_t keyexpr
The keyexpr of this data sample.

z_bytes_t payload
The value of this data sample.

z_encoding_t encoding
The encoding of the value of this data sample.

z_sample_kind_t kind
The kind of this data sample (PUT or DELETE).

z_timestamp_t timestamp
The timestamp of this data sample.

typedef int z_hello_t
Represents the content of a hello message returned by a zenoh entity as a reply to a scout message.

unsigned int whatami
The kind of zenoh entity.

z_bytes_t pid
The Zenoh ID of the scouted entity (empty if absent).

z_str_array_t locators
The locators of the scouted entity.

typedef int z_reply_t
Represents the reply to a query.

z_reply_data_t data
the content of the reply.

typedef int z_reply_data_t
Represents the content of a reply to a query.

z_sample_t sample
The _z_sample_t containing the key and value of the reply.

z_bytes_t replier_id
The id of the replier that sent this reply.

type zp_task_read_options_t
Represents the set of options that can be applied to the read task, whenever issued via zp_start_read_task().

type zp_task_lease_options_t
Represents the set of options that can be applied to the lease task, whenever issued via
zp_start_lease_task().

10 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

type zp_read_options_t
Represents the set of options that can be applied to the read operation, whenever issued via zp_read().

type zp_send_keep_alive_options_t
Represents the set of options that can be applied to the keep alive send, whenever issued via
zp_send_keep_alive().

1.1.3 Arrays

type z_str_array_t
Represents an array of char *.

Operations over z_str_array_t must be done using the provided functions:

• char *z_str_array_get(z_str_array_t *a, size_t k);

• size_t z_str_array_len(z_str_array_t *a);

• uint8_t z_str_array_array_is_empty(z_str_array_t *a);

1.1.4 Owned Types

Like most z_owned_X_t types, you may obtain an instance of z_X_t by loaning it using z_X_loan(&val). The
z_loan(val)macro, available if your compiler supports C11’s _Generic, is equivalent to writing z_X_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said instance,
as this implies the instance’s inners were moved. To make this fact more obvious when reading your code, consider
using z_move(val) instead of &val as the argument. After a move, val will still exist, but will no longer be valid.
The destructors are double-free-safe, but other functions will still trust that your val is valid.

To check if val is still valid, you may use z_X_check(&val) or z_check(val) if your compiler supports _Generic,
which will return true if val is valid.

type z_owned_bytes_t
A zenoh-allocated z_bytes_t.

type z_owned_string_t
A zenoh-allocated z_string_t.

type z_owned_keyexpr_t
A zenoh-allocated z_keyexpr_t.

type z_owned_config_t
A zenoh-allocated z_config_t.

type z_owned_session_t
A zenoh-allocated z_session_t.

type z_owned_subscriber_t
A zenoh-allocated z_subscriber_t.

type z_owned_pull_subscriber_t
A zenoh-allocated z_pull_subscriber_t.

type z_owned_publisher_t
A zenoh-allocated z_publisher_t.

1.1. Zenoh Types 11

zenoh-pico, Release 0.6.0-beta.1

type z_owned_queryable_t
A zenoh-allocated z_queryable_t.

type z_owned_reply_t
A zenoh-allocated z_reply_t.

type z_owned_str_array_t
A zenoh-allocated z_str_array_t.

1.1.5 Closures

A closure is a structure that contains all the elements for stateful, memory-leak-free callbacks:

• context: a pointer to an arbitrary state.

• call: the typical callback function. context will be passed as its last argument.

• drop: allows the callback’s state to be freed. context will be passed as its last argument.

Closures are not guaranteed not to be called concurrently.

It is guaranteed that:

• call will never be called once drop has started.

• drop will only be called once, and after every call has ended.

• The two previous guarantees imply that call and drop are never called concurrently.

type z_owned_closure_sample_t
Represents the sample closure.

A closure is a structure that contains all the elements for stateful, memory-leak-free callbacks.

void *context
a pointer to an arbitrary state.

_z_data_handler_t call
void *call(const struct z_sample_t*, const void *context) is the callback function.

_z_dropper_handler_t drop
void *drop(void*) allows the callback’s state to be freed.

type z_owned_closure_query_t
Represents the query callback closure.

A closure is a structure that contains all the elements for stateful, memory-leak-free callbacks.

void *context
a pointer to an arbitrary state.

_z_questionable_handler_t call
void (*_z_questionable_handler_t)(z_query_t *query, void *arg) is the callback

function. _z_dropper_handler_t drop: void *drop(void*) allows the callback’s state to be freed.

type z_owned_closure_reply_t
Represents the query reply callback closure.

A closure is a structure that contains all the elements for stateful, memory-leak-free callbacks.

12 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

void *context
a pointer to an arbitrary state.

z_owned_reply_handler_t call
void (*z_owned_reply_handler_t)(z_owned_reply_t reply, void *arg) is the callback

function. _z_dropper_handler_t drop: void *drop(void*) allows the callback’s state to be freed.

type z_owned_closure_hello_t
Represents the Zenoh ID callback closure.

A closure is a structure that contains all the elements for stateful, memory-leak-free callbacks.

void *context
a pointer to an arbitrary state.

z_owned_hello_handler_t call
void (*z_owned_hello_handler_t)(const z_owned_hello_t *hello, void *arg) is the

callback function. _z_dropper_handler_t drop: void *drop(void*) allows the callback’s state to be freed.

type z_owned_closure_zid_t
Represents the Zenoh ID callback closure.

A closure is a structure that contains all the elements for stateful, memory-leak-free callbacks.

void *context
a pointer to an arbitrary state.

z_id_handler_t call
void (*z_id_handler_t)(const z_id_t *id, void *arg) is the callback function.

_z_dropper_handler_t drop
void *drop(void*) allows the callback’s state to be freed.

1.2 Zenoh Functions

1.2.1 Macros

z_loan(x)
Defines a generic function for loaning any of the z_owned_X_t types.

Parameters

• x – The instance to loan.

Returns Returns the loaned type associated with x.

z_move(x)
Defines a generic function for moving any of the z_owned_X_t types.

Parameters

• x – The instance to move.

Returns Returns the instance associated with x.

1.2. Zenoh Functions 13

zenoh-pico, Release 0.6.0-beta.1

z_check(x)
Defines a generic function for checking the validity of any of the z_owned_X_t types.

Parameters

• x – The instance to check.

Returns Returns true if valid, or false otherwise.

z_clone(x)
Defines a generic function for cloning any of the z_owned_X_t types.

Parameters

• x – The instance to clone.

Returns Returns the cloned instance of x.

z_drop(x)
Defines a generic function for droping any of the z_owned_X_t types.

Parameters

• x – The instance to drop.

z_closure()

Defines a variadic macro to ease the definition of callback closures.

Parameters

• callback – the typical callback function. context will be passed as its last argument.

• droper – allows the callback’s state to be freed. contextwill be passed as its last argument.

• context – a pointer to an arbitrary state.

Returns Returns the new closure.

1.2.2 Primitives

z_keyexpr_t z_keyexpr(const char *name)
Data Types Handlers

Constructs a z_keyexpr_t departing from a string. It is a loaned key expression that aliases name.

Parameters

• name – Pointer to string representation of the keyexpr as a null terminated string.

Returns The z_keyexpr_t corresponding to the given string.

char *z_keyexpr_to_string(z_keyexpr_t keyexpr)
Get null-terminated string departing from a z_keyexpr_t.

If given keyexpr contains a declared keyexpr, the resulting value will be NULL. In that case, the user must use
zp_keyexpr_resolve() to resolve the nesting declarations and get its full expanded representation.

Parameters

• name – Pointer to string representation of the keyexpr as a null terminated string.

Returns The z_keyexpr_t corresponding to the given string.

14 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

char *zp_keyexpr_resolve(z_session_t zs, z_keyexpr_t keyexpr)
Constructs a null-terminated string departing from a z_keyexpr_t for a given z_session_t. The user is
responsible of droping the returned string using z_free.

Parameters

• zs – A loaned instance of the the z_session_t to resolve the keyexpr.

• keyexpr – A loaned instance of z_keyexpr_t to be resolved.

Returns The string representation of a keyexpr for a given session.

_Bool z_keyexpr_is_initialized(z_keyexpr_t *keyexpr)
Checks if a given keyexpr is valid.

Parameters

• keyexpr – A loaned instance of z_keyexpr_t to be checked.

Returns Returns true if the keyexpr is valid, or false otherwise.

int8_t z_keyexpr_is_canon(const char *start, size_t len)
Check if a given keyexpr is valid and in its canonical form.

Parameters

• start – Pointer to the keyexpr in its string representation as a non-null terminated string.

• len – Number of characters in start.

Returns Returns 0 if the passed string is a valid (and canon) key expression, or a negative value
otherwise. Error codes are defined in zp_keyexpr_canon_status_t.

int8_t zp_keyexpr_is_canon_null_terminated(const char *start)
Check if a given keyexpr is valid and in its canonical form.

Parameters

• start – Pointer to the keyexpr in its string representation as a null terminated string.

• len – Number of characters in start.

Returns Returns 0 if the passed string is a valid (and canon) key expression, or a negative value
otherwise. Error codes are defined in zp_keyexpr_canon_status_t.

int8_t z_keyexpr_canonize(char *start, size_t *len)
Canonization of a given keyexpr in its its string representation. The canonization is performed over the passed
string, possibly shortening it by modifying len.

Parameters

• start – Pointer to the keyexpr in its string representation as a non-null terminated string.

• len – Number of characters in start.

Returns Returns 0 if the canonization is successful, or a negative value otherwise. Error codes
are defined in zp_keyexpr_canon_status_t.

int8_t zp_keyexpr_canonize_null_terminated(char *start)
Canonization of a given keyexpr in its its string representation. The canonization is performed over the passed
string, possibly shortening it by modifying len.

Parameters

• start – Pointer to the keyexpr in its string representation as a null terminated string.

1.2. Zenoh Functions 15

zenoh-pico, Release 0.6.0-beta.1

• len – Number of characters in start.

Returns Returns 0 if the canonization is successful, or a negative value otherwise. Error codes
are defined in zp_keyexpr_canon_status_t.

int8_t z_keyexpr_includes(z_keyexpr_t l, z_keyexpr_t r)
Check if a given keyexpr contains another keyexpr in its set.

Parameters

• l – The first keyexpr.

• r – The second keyexpr.

Returns Returns 0 if l includes r, i.e. the set defined by l contains every key belonging to the set

defined by r. Otherwise, it returns a negative value.

_Bool zp_keyexpr_includes_null_terminated(const char *l, const char *r)
Check if a given keyexpr contains another keyexpr in its set.

Parameters

• l – Pointer to the keyexpr in its string representation as a null terminated string.

• llen – Number of characters in l.

• r – Pointer to the keyexpr in its string representation as a null terminated string.

• rlen – Number of characters in r.

Returns Returns true if l includes r, i.e. the set defined by l contains every key belonging to the set
defined

by r.

int8_t z_keyexpr_intersects(z_keyexpr_t l, z_keyexpr_t r)
Check if a given keyexpr intersects with another keyexpr.

Parameters

• l – The first keyexpr.

• r – The second keyexpr.

Returns Returns 0 if the keyexprs intersect, i.e. there exists at least one key which is contained in
both of the

sets defined by l and r. Otherwise, it returns negative value.

_Bool zp_keyexpr_intersect_null_terminated(const char *l, const char *r)
Check if a given keyexpr intersects with another keyexpr.

Parameters

• l – Pointer to the keyexpr in its string representation as a null terminated string.

• llen – Number of characters in l.

• r – Pointer to the keyexpr in its string representation as a null terminated string.

• rlen – Number of characters in r.

Returns Returns true if the keyexprs intersect, i.e. there exists at least one key which is contained
in both of the

sets defined by l and r. Otherwise, it returns false.

16 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

int8_t z_keyexpr_equals(z_keyexpr_t l, z_keyexpr_t r)
Check if a two keyexprs are equal.

Parameters

• l – The first keyexpr.

• r – The second keyexpr.

Returns Returns 0 if both l and r are equal, or negative value otherwise.

_Bool zp_keyexpr_equals_null_terminated(const char *l, const char *r)
Check if a two keyexprs are equal.

Parameters

• l – Pointer to the keyexpr in its string representation as a null terminated string.

• llen – Number of characters in l.

• r – Pointer to the keyexpr in its string representation as a null terminated string.

• rlen – Number of characters in r.

Returns Returns true if both l and r are equal, or false otherwise.

z_owned_config_t z_config_new(void)
Return a new, zenoh-allocated, empty configuration. It consists in an empty set of properties for zenoh session
configuration.

Like most z_owned_X_t types, you may obtain an instance of z_owned_config_t by loaning it using
z_config_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic, is
equivalent to writing z_config_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_config_check(&val) or z_check(val) if your compiler supports
_Generic, which will return true if val is valid, or false otherwise.

Returns Returns a new, zenoh-allocated, empty configuration.

z_owned_config_t z_config_default(void)
Return a new, zenoh-allocated, default configuration. It consists in a default set of properties for zenoh session
configuration.

Like most z_owned_X_t types, you may obtain an instance of z_owned_config_t by loaning it using
z_config_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic, is
equivalent to writing z_config_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_config_check(&val) or z_check(val) if your compiler supports
_Generic, which will return true if val is valid, or false otherwise.

Returns Returns a new, zenoh-allocated, default configuration.

1.2. Zenoh Functions 17

zenoh-pico, Release 0.6.0-beta.1

const char *zp_config_get(z_config_t config, unsigned int key)
Gets the property with the given integer key from the configuration.

Parameters

• config – A loaned instance of z_owned_config_t.

• key – Integer key for the requested property.

Returns Returns the property with the given integer key from the configuration.

int8_t zp_config_insert(z_config_t config, unsigned int key, z_string_t value)
Inserts or replaces the property with the given integer key in the configuration.

Parameters

• config – A loaned instance of z_owned_config_t.

• key – Integer key for the property to be inserted.

• value – Property value to be inserted.

Returns Returns 0 if the insertion is successful, or a negative value otherwise.

z_owned_scouting_config_t z_scouting_config_default(void)
Return a new, zenoh-allocated, default scouting configuration. It consists in a default set of properties for scouting
configuration.

Like most z_owned_X_t types, you may obtain an instance of z_owned_scouting_config_t by loaning it
using z_scouting_config_loan(&val). The z_loan(val)macro, available if your compiler supports C11’s
_Generic, is equivalent to writing z_config_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_scouting_config_check(&val) or z_check(val) if your
compiler supports _Generic, which will return true if val is valid, or false otherwise.

Returns Returns a new, zenoh-allocated, default scouting configuration.

z_owned_scouting_config_t z_scouting_config_from(z_config_t config)
Return a new, zenoh-allocated, scouting configuration extracted from a z_owned_config_t. It consists in a
default set of properties for scouting configuration.

Like most z_owned_X_t types, you may obtain an instance of z_owned_scouting_config_t by loaning it
using z_scouting_config_loan(&val). The z_loan(val)macro, available if your compiler supports C11’s
_Generic, is equivalent to writing z_config_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_scouting_config_check(&val) or z_check(val) if your
compiler supports _Generic, which will return true if val is valid, or false otherwise.

Parameters

• config – A loaned instance of z_owned_config_t.

18 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

Returns Returns a new, zenoh-allocated, default scouting configuration.

const char *zp_scouting_config_get(z_scouting_config_t config, unsigned int key)
Gets the property with the given integer key from the configuration.

Parameters

• config – A loaned instance of z_owned_scouting_config_t.

• key – Integer key for the requested property.

Returns Returns the property with the given integer key from the configuration.

int8_t zp_scouting_config_insert(z_scouting_config_t config, unsigned int key, z_string_t value)
Inserts or replaces the property with the given integer key in the configuration.

Parameters

• config – A loaned instance of z_owned_scouting_config_t.

• key – Integer key for the property to be inserted.

• value – Property value to be inserted.

Returns Returns 0 if the insertion is successful, or a negative value otherwise.

z_encoding_t z_encoding_default(void)
Constructs a default encoding.

Returns Returns the constructed z_encoding_t.

z_query_target_t z_query_target_default(void)
Constructs a default query target.

Returns Returns the constructed z_query_target_t.

z_query_consolidation_t z_query_consolidation_auto(void)
Automatic query consolidation strategy selection.

A query consolidation strategy will automatically be selected depending the query selector. If
the selector contains time range properties, no consolidation is performed. Otherwise the
z_query_consolidation_latest() strategy is used.

Returns Returns the constructed z_query_consolidation_t.

z_query_consolidation_t z_query_consolidation_default(void)
Constructs a default z_query_consolidation_t.

Returns Returns the constructed z_query_consolidation_t.

z_query_consolidation_t z_query_consolidation_latest(void)
Latest consolidation.

This strategy optimizes bandwidth on all links in the system but will provide a very poor latency.

Returns Returns the constructed z_query_consolidation_t.

z_query_consolidation_t z_query_consolidation_monotonic(void)
Monotonic consolidation.

This strategy offers the best latency. Replies are directly transmitted to the application when received without
needing to wait for all replies. This mode does not garantee that there will be no duplicates.

Returns Returns the constructed z_query_consolidation_t.

1.2. Zenoh Functions 19

zenoh-pico, Release 0.6.0-beta.1

z_query_consolidation_t z_query_consolidation_none(void)
No consolidation.

This strategy is usefull when querying timeseries data bases or when using quorums.

Returns Returns the constructed z_query_consolidation_t.

z_bytes_t z_query_parameters(const z_query_t *query)
Get a query’s value selector by aliasing it.

Parameters

• query – Pointer to the query to get the value selector from.

Returns Returns the value selector wrapped as a z_bytes_t, since value selector is a user-defined
representation.

z_keyexpr_t z_query_keyexpr(const z_query_t *query)
Get a query’s key by aliasing it.

Parameters

• query – Pointer to the query to get keyexpr from.

Returns Returns the z_keyexpr_t associated to the query.

z_owned_closure_sample_t z_closure_sample(_z_data_handler_t call, _z_dropper_handler_t drop, void
*context)

Return a new sample closure. It consists on a structure that contains all the elements for stateful, memory-leak-
free callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_closure_sample_t by loaning it
using z_closure_sample_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s
_Generic, is equivalent to writing z_closure_sample_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_closure_sample_check(&val) or z_check(val) if your com-
piler supports _Generic, which will return true if val is valid, or false otherwise.

Parameters

• call – the typical callback function. context will be passed as its last argument.

• drop – allows the callback’s state to be freed. context will be passed as its last argument.

• context – a pointer to an arbitrary state.

Returns Returns a new sample closure.

z_owned_closure_query_t z_closure_query(_z_questionable_handler_t call, _z_dropper_handler_t drop, void
*context)

Return a new query closure. It consists on a structure that contains all the elements for stateful, memory-leak-free
callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_closure_query_t by loaning it us-
ing z_closure_query_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s
_Generic, is equivalent to writing z_closure_query_loan(&val).

20 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_closure_query_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

Parameters

• call – the typical callback function. context will be passed as its last argument.

• drop – allows the callback’s state to be freed. context will be passed as its last argument.

• context – a pointer to an arbitrary state.

Returns Returns a new query closure.

z_owned_closure_reply_t z_closure_reply(z_owned_reply_handler_t call, _z_dropper_handler_t drop, void
*context)

Return a new reply closure. It consists on a structure that contains all the elements for stateful, memory-leak-free
callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_closure_reply_t by loaning it us-
ing z_closure_reply_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s
_Generic, is equivalent to writing z_closure_reply_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_closure_reply_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

Parameters

• call – the typical callback function. context will be passed as its last argument.

• drop – allows the callback’s state to be freed. context will be passed as its last argument.

• context – a pointer to an arbitrary state.

Returns Returns a new reply closure.

z_owned_closure_hello_t z_closure_hello(z_owned_hello_handler_t call, _z_dropper_handler_t drop, void
*context)

Return a new hello closure. It consists on a structure that contains all the elements for stateful, memory-leak-free
callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_closure_hello_t by loaning it us-
ing z_closure_hello_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s
_Generic, is equivalent to writing z_closure_hello_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

1.2. Zenoh Functions 21

zenoh-pico, Release 0.6.0-beta.1

To check if val is still valid, you may use z_closure_hello_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

Parameters

• call – the typical callback function. context will be passed as its last argument.

• drop – allows the callback’s state to be freed. context will be passed as its last argument.

• context – a pointer to an arbitrary state.

Returns Returns a new hello closure.

z_owned_closure_zid_t z_closure_zid(z_id_handler_t call, _z_dropper_handler_t drop, void *context)
Return a new zid closure. It consists on a structure that contains all the elements for stateful, memory-leak-free
callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_closure_zid_t by loaning it us-
ing z_closure_zid_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s
_Generic, is equivalent to writing z_closure_zid_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_closure_zid_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

Parameters

• call – the typical callback function. context will be passed as its last argument.

• drop – allows the callback’s state to be freed. context will be passed as its last argument.

• context – a pointer to an arbitrary state.

Returns Returns a new zid closure.

z_owned_hello_t z_hello_null(void)
Constructs a gravestone value for hello, useful to steal one from a callback. This is useful when you wish to take
ownership of a value from a callback to z_scout():

• copy the value of the callback’s argument’s pointee,

• overwrite the pointee with this function’s return value,

• you are now responsible for dropping your copy of the hello.

int8_t z_scout(z_owned_scouting_config_t *config, z_owned_closure_hello_t *callback)
Primitives

Looks for other Zenoh-enabled entities like routers and/or peers.

Parameters

• config – A moved instance of z_owned_scouting_config_t containing the set proper-
ties to configure the

scouting. callback: A moved instance of z_owned_closure_hello_t containg the callbacks to be called.

Returns Returns 0 if the scouting is successful triggered, or a negative value otherwise.

22 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

z_owned_session_t z_open(z_owned_config_t *config)
Opens a Zenoh session.

Like most z_owned_X_t types, you may obtain an instance of z_owned_session_t by loaning it using
z_session_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic,
is equivalent to writing z_session_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_session_check(&val) or z_check(val) if your compiler sup-
ports _Generic, which will return true if val is valid, or false otherwise.

Parameters

• config – A moved instance of z_owned_config_t containing the set properties to config-
ure the session.

Returns A z_owned_session_t with either a valid open session or a failing session. Should the
session opening fail, z_check(val) ing the returned value will return false.

int8_t z_close(z_owned_session_t *zs)
Closes a Zenoh session.

Parameters

• zs – A moved instance of the the z_owned_session_t to close.

Returns Returns 0 if the session is successful closed, or a negative value otherwise.

int8_t z_info_peers_zid(const z_session_t zs, z_owned_closure_zid_t *callback)
Fetches the Zenoh IDs of all connected peers.

callback will be called once for each ID. It is guaranteed to never be called concurrently, and to be dropped
before this function exits.

Parameters

• zs – A loaned instance of the the z_session_t to inquiry.

• callback – A moved instance of z_owned_closure_zid_t containg the callbacks to be
called.

Returns Returns 0 if the info is successful triggered, or a negative value otherwise.

int8_t z_info_routers_zid(const z_session_t zs, z_owned_closure_zid_t *callback)
Fetches the Zenoh IDs of all connected routers.

callback will be called once for each ID. It is guaranteed to never be called concurrently, and to be dropped
before this function exits.

Parameters

• zs – A loaned instance of the the z_session_t to inquiry.

• callback – A moved instance of z_owned_closure_zid_t containg the callbacks to be
called.

Returns Returns 0 if the info is successful triggered, or a negative value otherwise.

1.2. Zenoh Functions 23

zenoh-pico, Release 0.6.0-beta.1

z_id_t z_info_zid(const z_session_t zs)
Get the local Zenoh ID associated to a given Zenoh session.

Unless the z_session_t is invalid, that ID is guaranteed to be non-zero. In other words, this function returning
an array of 16 zeros means you failed to pass it a valid session.

Parameters

• zs – A loaned instance of the the z_session_t to inquiry.

Returns Returns the local Zenoh ID of the given z_session_t.

z_put_options_t z_put_options_default(void)
Constructs the default values for the put operation.

Returns Returns the constructed z_put_options_t.

z_delete_options_t z_delete_options_default(void)
Constructs the default values for the delete operation.

Returns Returns the constructed z_delete_options_t.

int8_t z_put(z_session_t zs, z_keyexpr_t keyexpr, const uint8_t *payload, z_zint_t payload_len, const
z_put_options_t *options)

Puts data for a given keyexpr.

Parameters

• zs – A loaned instance of the the z_session_t through where data will be put.

• keyexpr – A loaned instance of z_keyexpr_t to put.

• payload – Pointer to the data to put.

• payload_len – The length of the payload.

• options – The put options to be applied in the put operation.

Returns Returns 0 if the put operation is successful, or a negative value otherwise.

int8_t z_delete(z_session_t zs, z_keyexpr_t keyexpr, const z_delete_options_t *options)
Deletes data from a given keyexpr.

Parameters

• zs – A loaned instance of the the z_session_t through where data will be put.

• keyexpr – A loaned instance of z_keyexpr_t to put.

• options – The delete options to be applied in the delete operation.

Returns Returns 0 if the delete operation is successful, or a negative value otherwise.

z_get_options_t z_get_options_default(void)
Constructs the default values for the get operation.

Returns Returns the constructed z_get_options_t.

int8_t z_get(z_session_t zs, z_keyexpr_t keyexpr, const char *parameters, z_owned_closure_reply_t *callback,
const z_get_options_t *options)

Issues a distributed query for a given keyexpr.

Parameters

• zs – A loaned instance of the the z_session_t through where data will be put.

24 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

• keyexpr – A loaned instance of z_keyexpr_t to put.

• parameters – Pointer to the parameters as a null-terminated string.

• callback – A moved instance of z_owned_closure_reply_t containg the callbacks to
be called.

• options – The get options to be aplied in the distributed query.

Returns Returns 0 if the put operation is successful, or a negative value otherwise.

z_owned_keyexpr_t z_declare_keyexpr(z_session_t zs, z_keyexpr_t keyexpr)
Declares a keyexpr, so that it is internally mapped into into a numerical id.

This numerical id is used on the network to save bandwidth and ease the retrieval of the concerned resource in
the routing tables.

Like most z_owned_X_t types, you may obtain an instance of z_owned_keyexpr_t by loaning it using
z_keyexpr_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic,
is equivalent to writing z_keyexpr_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_keyexpr_check(&val) or z_check(val) if your compiler sup-
ports _Generic, which will return true if val is valid, or false otherwise.

Parameters

• zs – A loaned instance of the the z_session_t where to declare the keyexpr.

• keyexpr – A loaned instance of z_keyexpr_t to declare.

Returns A z_owned_keyexpr_t with either a valid or invalid keyexpr. Should the keyexpr be in-
valid, z_check(val) ing the returned value will return false.

int8_t z_undeclare_keyexpr(z_session_t zs, z_owned_keyexpr_t *keyexpr)
Undeclares the keyexpr generated by a call to z_declare_keyexpr().

Parameters

• zs – A loaned instance of the the z_session_t through where data will be put.

• keyexpr – A moved instance of z_owned_keyexpr_t to undeclare.

Returns Returns 0 if the undeclare keyexpr operation is successful, or a negative value otherwise.

z_publisher_options_t z_publisher_options_default(void)
Constructs the default values for the publisher entity.

Returns Returns the constructed z_publisher_options_t.

z_owned_publisher_t z_declare_publisher(z_session_t zs, z_keyexpr_t keyexpr, z_publisher_options_t
*options)

Declares a publisher for the given keyexpr.

Data can be put and deleted with this publisher with the help of the z_publisher_put() and
z_publisher_delete() functions.

Like most z_owned_X_t types, you may obtain an instance of z_owned_publisher_t by loaning it using
z_publisher_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic,
is equivalent to writing z_publisher_loan(&val).

1.2. Zenoh Functions 25

zenoh-pico, Release 0.6.0-beta.1

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_publisher_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

Parameters

• zs – A loaned instance of the the z_session_t where to declare the publisher.

• keyexpr – A loaned instance of z_keyexpr_t to associate with the publisher.

• options – The options to apply to the publisher. If NULL is passed, the default options will
be applied.

Returns A z_owned_publisher_t with either a valid publisher or a failing publisher. Should the
publisher be invalid, z_check(val) ing the returned value will return false.

int8_t z_undeclare_publisher(z_owned_publisher_t *pub)
Undeclares the publisher generated by a call to z_declare_publisher().

Parameters

• pub – A moved instance of z_owned_publisher_t to undeclare.

Returns Returns 0 if the undeclare publisher operation is successful, or a negative value other-
wise.

z_publisher_put_options_t z_publisher_put_options_default(void)
Constructs the default values for the put operation via a publisher entity.

Returns Returns the constructed z_publisher_put_options_t.

z_publisher_delete_options_t z_publisher_delete_options_default(void)
Constructs the default values for the delete operation via a publisher entity.

Returns Returns the constructed z_publisher_delete_options_t.

int8_t z_publisher_put(const z_publisher_t pub, const uint8_t *payload, size_t len, const
z_publisher_put_options_t *options)

Puts data for the keyexpr associated to the given publisher.

Parameters

• pub – A loaned instance of z_publisher_t from where to put the data.

• options – The options to apply to the put operation. If NULL is passed, the default options
will be applied.

Returns Returns 0 if the put operation is successful, or a negative value otherwise.

int8_t z_publisher_delete(const z_publisher_t pub, const z_publisher_delete_options_t *options)
Deletes data from the keyexpr associated to the given publisher.

Parameters

• pub – A loaned instance of z_publisher_t from where to delete the data.

• options – The options to apply to the delete operation. If NULL is passed, the default options
will be applied.

Returns Returns 0 if the delete operation is successful, or a negative value otherwise.

26 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

z_subscriber_options_t z_subscriber_options_default(void)
Constructs the default values for the subscriber entity.

Returns Returns the constructed z_subscriber_options_t.

z_owned_subscriber_t z_declare_subscriber(z_session_t zs, z_keyexpr_t keyexpr, z_owned_closure_sample_t
*callback, const z_subscriber_options_t *options)

Declares a (push) subscriber for the given keyexpr.

Received data is processed by means of callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_subscriber_t by loaning it using
z_subscriber_loan(&val). The z_loan(val)macro, available if your compiler supports C11’s _Generic,
is equivalent to writing z_subscriber_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_subscriber_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

Parameters

• zs – A loaned instance of the the z_session_t where to declare the subscriber.

• keyexpr – A loaned instance of z_keyexpr_t to associate with the subscriber.

• callback – A moved instance of z_owned_closure_sample_t containg the callbacks to
be called and the

context to pass to them. options: The options to apply to the subscriber. If NULL is passed, the default options
will be applied.

Returns A z_owned_subscriber_t with either a valid subscriber or a failing subscriber. Should
the subscriber be invalid, z_check(val) ing the returned value will return false.

int8_t z_undeclare_subscriber(z_owned_subscriber_t *sub)
Undeclares the (push) subscriber generated by a call to z_declare_subscriber().

Parameters

• sub – A moved instance of z_owned_subscriber_t to undeclare.

Returns Returns 0 if the undeclare (push) subscriber operation is successful, or a negative value
otherwise.

z_pull_subscriber_options_t z_pull_subscriber_options_default(void)
Constructs the default values for the pull subscriber entity.

Returns Returns the constructed z_pull_subscriber_options_t.

z_owned_pull_subscriber_t z_declare_pull_subscriber(z_session_t zs, z_keyexpr_t keyexpr,
z_owned_closure_sample_t *callback, const
z_pull_subscriber_options_t *options)

Declares a pull subscriber for the given keyexpr.

Data can be pulled with this subscriber with the help of the z_pull() function. Received data is processed by
means of callbacks.

1.2. Zenoh Functions 27

zenoh-pico, Release 0.6.0-beta.1

Like most z_owned_X_t types, you may obtain an instance of z_owned_pull_subscriber_t by loaning it
using z_pull_subscriber_loan(&val). The z_loan(val)macro, available if your compiler supports C11’s
_Generic, is equivalent to writing z_pull_subscriber_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_pull_subscriber_check(&val) or z_check(val) if your
compiler supports _Generic, which will return true if val is valid, or false otherwise.

Parameters

• zs – A loaned instance of the the z_session_t where to declare the subscriber.

• keyexpr – A loaned instance of z_keyexpr_t to associate with the subscriber.

• callback – A moved instance of z_owned_closure_sample_t containg the callbacks to
be called and the

context to pass to them. options: The options to apply to the pull subscriber. If NULL is passed, the default
options will be applied.

Returns A z_owned_pull_subscriber_t with either a valid subscriber or a failing subscriber.
Should the pull subscriber be invalid, z_check(val) ing the returned value will return false.

int8_t z_undeclare_pull_subscriber(z_owned_pull_subscriber_t *sub)
Undeclares the pull subscriber generated by a call to z_declare_pull_subscriber().

Parameters

• sub – A moved instance of z_owned_pull_subscriber_t to undeclare.

Returns Returns 0 if the undeclare pull subscriber operation is successful, or a negative value
otherwise.

int8_t z_subscriber_pull(const z_pull_subscriber_t sub)
Pulls data for z_owned_pull_subscriber_t. The pulled data will be provided by calling the callback function
provided to the z_declare_pull_subscriber() function.

Parameters

• sub – A loaned instance of z_pull_subscriber_t from where to pull the data.

Returns Returns 0 if the pull operation is successful, or a negative value otherwise.

z_queryable_options_t z_queryable_options_default(void)
Constructs the default values for the queryable entity.

Returns Returns the constructed z_queryable_options_t.

z_owned_queryable_t z_declare_queryable(z_session_t zs, z_keyexpr_t keyexpr, z_owned_closure_query_t
*callback, const z_queryable_options_t *options)

Declares a queryable for the given keyexpr.

Received queries are processed by means of callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_queryable_t by loaning it using
z_queryable_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic,
is equivalent to writing z_queryable_loan(&val).

28 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your
code, consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val is
valid.

To check if val is still valid, you may use z_queryable_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

Parameters

• zs – A loaned instance of the the z_session_t where to declare the subscriber.

• keyexpr – A loaned instance of z_keyexpr_t to associate with the subscriber.

• callback – A moved instance of z_owned_closure_query_t containg the callbacks to
be called and the context

to pass to them. options: The options to apply to the queryable. If NULL is passed, the default options will be
applied.

Returns A z_owned_queryable_t with either a valid queryable or a failing queryable. Should the
queryable be invalid, z_check(val) ing the returned value will return false.

int8_t z_undeclare_queryable(z_owned_queryable_t *queryable)
Undeclares the queryable generated by a call to z_declare_queryable().

Parameters

• queryable – A moved instance of z_owned_queryable_t to undeclare.

Returns Returns 0 if the undeclare queryable operation is successful, or a negative value other-
wise.

int8_t z_query_reply(const z_query_t *query, const z_keyexpr_t keyexpr, const uint8_t *payload, size_t
payload_len, const z_query_reply_options_t *options)

Sends a reply to a query.

This function must be called inside of a z_owned_closure_query_t callback associated to the
z_owned_queryable_t, passing the received query as parameters of the callback function. This function can
be called multiple times to send multiple replies to a query. The reply will be considered complete when the
callback returns.

Parameters

• query – Pointer to the received query.

• keyexpr – A loaned instance of z_keyexpr_t to associate with the subscriber.

• payload – Pointer to the data to put.

• payload_len – The length of the payload.

• options – The options to apply to the send query reply operation. If NULL is passed, the
default options will be

applied.

Returns Returns 0 if the send query reply operation is successful, or a negative value otherwise.

z_owned_reply_t z_reply_null(void)
Returns an invalidated z_owned_reply_t.

This is useful when you wish to take ownership of a value from a callback to z_get():

1.2. Zenoh Functions 29

zenoh-pico, Release 0.6.0-beta.1

• copy the value of the callback’s argument’s pointee,

• overwrite the pointee with this function’s return value,

• you are now responsible for dropping your copy of the reply.

_Bool z_reply_is_ok(const z_owned_reply_t *reply)
Checks if the queryable answered with an OK, which allows this value to be treated as a sample.

If this returns false, you should use z_check before trying to use z_reply_err() if you want to process the
error that may be here.

Parameters

• reply – Pointer to the received query reply.

Returns Returns true if the queryable answered with an OK, which allows this value to be treated
as a sample, or

false otherwise.

z_sample_t z_reply_ok(z_owned_reply_t *reply)
Yields the contents of the reply by asserting it indicates a success.

You should always make sure that z_reply_is_ok() returns true before calling this function.

Parameters

• reply – Pointer to the received query reply.

Returns Returns the z_sample_t wrapped in the query reply.

z_value_t z_reply_err(const z_owned_reply_t *reply)
Yields the contents of the reply by asserting it indicates a failure.

You should always make sure that z_reply_is_ok() returns false before calling this function.

Parameters

• reply – Pointer to the received query reply.

Returns Returns the z_value_t wrapped in the query reply.

zp_task_read_options_t zp_task_read_options_default(void)
Multi Thread Taks helpers

Constructs the default values for the session read task.

Returns Returns the constructed zp_task_read_options_t.

int8_t zp_start_read_task(z_session_t zs, const zp_task_read_options_t *options)
Start a separate task to read from the network and process the messages as soon as they are received.

Note that the task can be implemented in form of thread, process, etc. and its implementation is platform-
dependent.

Parameters

• zs – A loaned instance of the the z_session_t where to start the read task.

• options – The options to apply when starting the read task. If NULL is passed, the default
options will be

applied.

Returns Returns 0 if the read task started successfully, or a negative value otherwise.

30 Chapter 1. API Reference

zenoh-pico, Release 0.6.0-beta.1

int8_t zp_stop_read_task(z_session_t zs)
Stop the read task.

This may result in stopping a thread or a process depending on the target platform.

Parameters

• zs – A loaned instance of the the z_session_t where to stop the read task.

Returns Returns 0 if the read task stopped successfully, or a negative value otherwise.

zp_task_lease_options_t zp_task_lease_options_default(void)
Constructs the default values for the session lease task.

Returns Returns the constructed zp_task_lease_options_t.

int8_t zp_start_lease_task(z_session_t zs, const zp_task_lease_options_t *options)
Start a separate task to handle the session lease.

This task will send KeepAlive messages when needed and will close the session when the lease is expired.
When operating over a multicast transport, it also periodically sends the Join messages. Note that the task can
be implemented in form of thread, process, etc. and its implementation is platform-dependent.

Parameters

• zs – A loaned instance of the the z_session_t where to start the lease task.

• options – The options to apply when starting the lease task. If NULL is passed, the default
options will be

applied.

Returns Returns 0 if the lease task started successfully, or a negative value otherwise.

int8_t zp_stop_lease_task(z_session_t zs)
Stop the lease task.

This may result in stopping a thread or a process depending on the target platform.

Parameters

• zs – A loaned instance of the the z_session_t where to stop the lease task.

Returns Returns 0 if the lease task stopped successfully, or a negative value otherwise.

zp_read_options_t zp_read_options_default(void)
Single Thread helpers

Constructs the default values for the reading procedure.

Returns Returns the constructed zp_read_options_t.

int8_t zp_read(z_session_t zs, const zp_read_options_t *options)
Triggers a single execution of reading procedure from the network and processes of any received the message.

Parameters

• zs – A loaned instance of the the z_session_t where trigger the reading procedure.

• options – The options to apply to the read. If NULL is passed, the default options will be

applied.

Returns Returns 0 if the reading procedure was executed successfully, or a negative value oth-
erwise.

1.2. Zenoh Functions 31

zenoh-pico, Release 0.6.0-beta.1

zp_send_keep_alive_options_t zp_send_keep_alive_options_default(void)
Constructs the default values for sending the keep alive.

Returns Returns the constructed zp_send_keep_alive_options_t.

int8_t zp_send_keep_alive(z_session_t zs, const zp_send_keep_alive_options_t *options)
Triggers a single execution of keep alive procedure.

It will send KeepAlive messages when needed and will close the session when the lease is expired.

Parameters

• zs – A loaned instance of the the z_session_t where trigger the leasing procedure.

• options – The options to apply to the send of a KeepAlive messages. If NULL is passed,
the default options

will be applied.

Returns Returns 0 if the leasing procedure was executed successfully, or a negative value other-
wise.

32 Chapter 1. API Reference

INDEX

Z
z_bytes_t (C type), 6
z_bytes_t.len (C member), 6
z_bytes_t.start (C member), 6
z_check (C macro), 13
z_clone (C macro), 14
z_close (C function), 23
z_closure (C macro), 14
z_closure_hello (C function), 21
z_closure_query (C function), 20
z_closure_reply (C function), 21
z_closure_sample (C function), 20
z_closure_zid (C function), 22
z_config_default (C function), 17
z_config_new (C function), 17
z_config_t (C type), 7
z_congestion_control_t (C enum), 5
z_congestion_control_t.Z_CONGESTION_CONTROL_BLOCK

(C enumerator), 5
z_congestion_control_t.Z_CONGESTION_CONTROL_DROP

(C enumerator), 5
z_consolidation_mode_t (C enum), 5
z_consolidation_mode_t.Z_CONSOLIDATION_MODE_AUTO

(C enumerator), 5
z_consolidation_mode_t.Z_CONSOLIDATION_MODE_LATEST

(C enumerator), 5
z_consolidation_mode_t.Z_CONSOLIDATION_MODE_MONOTONIC

(C enumerator), 5
z_consolidation_mode_t.Z_CONSOLIDATION_MODE_NONE

(C enumerator), 5
z_declare_keyexpr (C function), 25
z_declare_publisher (C function), 25
z_declare_pull_subscriber (C function), 27
z_declare_queryable (C function), 28
z_declare_subscriber (C function), 27
z_delete (C function), 24
z_delete_options_default (C function), 24
z_delete_options_t (C type), 9
z_delete_options_t.congestion_control (C mem-

ber), 9
z_delete_options_t.priority (C member), 9
z_drop (C macro), 14

z_encoding_default (C function), 19
z_encoding_prefix_t (C enum), 4
z_encoding_prefix_t.Z_ENCODING_PREFIX_APP_OCTET_STREAM

(C enumerator), 4
z_encoding_prefix_t.Z_ENCODING_PREFIX_APP_SQL

(C enumerator), 4
z_encoding_prefix_t.Z_ENCODING_PREFIX_APP_X_WWW_FORM_URLENCODED

(C enumerator), 4
z_encoding_prefix_t.Z_ENCODING_PREFIX_APP_XHTML_XML

(C enumerator), 4
z_encoding_prefix_t.Z_ENCODING_PREFIX_APP_XML

(C enumerator), 4
z_encoding_prefix_t.Z_ENCODING_PREFIX_EMPTY

(C enumerator), 4
z_encoding_prefix_t.Z_ENCODING_PREFIX_IMAGE_GIF

(C enumerator), 5
z_encoding_prefix_t.Z_ENCODING_PREFIX_IMAGE_JPEG

(C enumerator), 4
z_encoding_prefix_t.Z_ENCODING_PREFIX_IMAGE_PNG

(C enumerator), 4
z_encoding_prefix_t.Z_ENCODING_PREFIX_TEXT_JAVASCRIPT

(C enumerator), 4
z_encoding_prefix_t.Z_ENCODING_PREFIX_TEXT_PLAIN

(C enumerator), 4
z_encoding_t (C type), 8
z_encoding_t.prefix (C member), 8
z_encoding_t.suffix (C member), 8
z_get (C function), 24
z_get_options_default (C function), 24
z_get_options_t (C type), 9
z_get_options_t.consolidation (C member), 10
z_get_options_t.target (C member), 9
z_hello_null (C function), 22
z_hello_t (C type), 10
z_hello_t.locators (C member), 10
z_hello_t.pid (C member), 10
z_hello_t.whatami (C member), 10
z_id_t (C type), 6
z_id_t.id (C member), 7
z_info_peers_zid (C function), 23
z_info_routers_zid (C function), 23
z_info_zid (C function), 23

33

zenoh-pico, Release 0.6.0-beta.1

z_keyexpr (C function), 14
z_keyexpr_canonize (C function), 15
z_keyexpr_equals (C function), 16
z_keyexpr_includes (C function), 16
z_keyexpr_intersects (C function), 16
z_keyexpr_is_canon (C function), 15
z_keyexpr_is_initialized (C function), 15
z_keyexpr_t (C type), 7
z_keyexpr_to_string (C function), 14
z_loan (C macro), 13
z_move (C macro), 13
z_open (C function), 22
z_owned_bytes_t (C type), 11
z_owned_closure_hello_t (C type), 13
z_owned_closure_hello_t.call (C member), 13
z_owned_closure_hello_t.context (C member), 13
z_owned_closure_query_t (C type), 12
z_owned_closure_query_t.call (C member), 12
z_owned_closure_query_t.context (C member), 12
z_owned_closure_reply_t (C type), 12
z_owned_closure_reply_t.call (C member), 13
z_owned_closure_reply_t.context (C member), 12
z_owned_closure_sample_t (C type), 12
z_owned_closure_sample_t.call (C member), 12
z_owned_closure_sample_t.context (C member),

12
z_owned_closure_sample_t.drop (C member), 12
z_owned_closure_zid_t (C type), 13
z_owned_closure_zid_t.call (C member), 13
z_owned_closure_zid_t.context (C member), 13
z_owned_closure_zid_t.drop (C member), 13
z_owned_config_t (C type), 11
z_owned_keyexpr_t (C type), 11
z_owned_publisher_t (C type), 11
z_owned_pull_subscriber_t (C type), 11
z_owned_queryable_t (C type), 11
z_owned_reply_t (C type), 12
z_owned_session_t (C type), 11
z_owned_str_array_t (C type), 12
z_owned_string_t (C type), 11
z_owned_subscriber_t (C type), 11
z_priority_t (C enum), 5
z_priority_t._Z_PRIORITY_CONTROL (C enumera-

tor), 5
z_priority_t.Z_PRIORITY_BACKGROUND (C enumer-

ator), 6
z_priority_t.Z_PRIORITY_DATA (C enumerator), 6
z_priority_t.Z_PRIORITY_DATA_HIGH (C enumera-

tor), 6
z_priority_t.Z_PRIORITY_DATA_LOW (C enumera-

tor), 6
z_priority_t.Z_PRIORITY_INTERACTIVE_HIGH (C

enumerator), 5

z_priority_t.Z_PRIORITY_INTERACTIVE_LOW (C
enumerator), 6

z_priority_t.Z_PRIORITY_REAL_TIME (C enumera-
tor), 5

z_publisher_delete (C function), 26
z_publisher_delete_options_default (C func-

tion), 26
z_publisher_delete_options_t (C type), 9
z_publisher_options_default (C function), 25
z_publisher_options_t (C type), 8
z_publisher_options_t.congestion_control (C

member), 9
z_publisher_put (C function), 26
z_publisher_put_options_default (C function), 26
z_publisher_put_options_t (C type), 9
z_publisher_put_options_t.encoding (C mem-

ber), 9
z_publisher_t (C type), 8
z_pull_subscriber_options_default (C function),

27
z_pull_subscriber_options_t (C type), 8
z_pull_subscriber_options_t.reliability (C

member), 8
z_pull_subscriber_t (C type), 7
z_put (C function), 24
z_put_options_default (C function), 24
z_put_options_t (C type), 9
z_put_options_t.congestion_control (C mem-

ber), 9
z_put_options_t.encoding (C member), 9
z_put_options_t.priority (C member), 9
z_query_consolidation_auto (C function), 19
z_query_consolidation_default (C function), 19
z_query_consolidation_latest (C function), 19
z_query_consolidation_monotonic (C function), 19
z_query_consolidation_none (C function), 19
z_query_consolidation_t (C type), 8
z_query_consolidation_t.mode (C member), 8
z_query_keyexpr (C function), 20
z_query_parameters (C function), 20
z_query_reply (C function), 29
z_query_reply_options_t (C type), 9
z_query_reply_options_t.encoding (C member), 9
z_query_target_default (C function), 19
z_query_target_t (C enum), 6
z_query_target_t.Z_QUERY_TARGET_ALL (C enu-

merator), 6
z_query_target_t.Z_QUERY_TARGET_ALL_COMPLETE

(C enumerator), 6
z_query_target_t.Z_QUERY_TARGET_BEST_MATCHING

(C enumerator), 6
z_queryable_options_default (C function), 28
z_queryable_options_t (C type), 9
z_queryable_options_t.complete (C member), 9

34 Index

zenoh-pico, Release 0.6.0-beta.1

z_queryable_t (C type), 8
z_reliability_t (C enum), 5
z_reliability_t.Z_RELIABILITY_BEST_EFFORT (C

enumerator), 5
z_reliability_t.Z_RELIABILITY_RELIABLE (C

enumerator), 5
z_reply_data_t (C type), 10
z_reply_data_t.replier_id (C member), 10
z_reply_data_t.sample (C member), 10
z_reply_err (C function), 30
z_reply_is_ok (C function), 30
z_reply_null (C function), 29
z_reply_ok (C function), 30
z_reply_t (C type), 10
z_reply_t.data (C member), 10
z_reply_tag_t (C enum), 5
z_reply_tag_t.Z_REPLY_TAG_DATA (C enumerator),

5
z_reply_tag_t.Z_REPLY_TAG_FINAL (C enumerator),

5
z_sample_kind_t (C enum), 4
z_sample_kind_t.Z_SAMPLE_KIND_DELETE (C enu-

merator), 4
z_sample_kind_t.Z_SAMPLE_KIND_PUT (C enumera-

tor), 4
z_sample_t (C type), 10
z_sample_t.encoding (C member), 10
z_sample_t.keyexpr (C member), 10
z_sample_t.kind (C member), 10
z_sample_t.payload (C member), 10
z_sample_t.timestamp (C member), 10
z_scout (C function), 22
z_scouting_config_default (C function), 18
z_scouting_config_from (C function), 18
z_session_t (C type), 7
z_str_array_t (C type), 11
z_string_t (C type), 7
z_string_t.len (C member), 7
z_string_t.val (C member), 7
z_submode_t (C enum), 6
z_submode_t.Z_SUBMODE_PULL (C enumerator), 6
z_submode_t.Z_SUBMODE_PUSH (C enumerator), 6
z_subscriber_options_default (C function), 27
z_subscriber_options_t (C type), 8
z_subscriber_options_t.reliability (C mem-

ber), 8
z_subscriber_pull (C function), 28
z_subscriber_t (C type), 7
z_undeclare_keyexpr (C function), 25
z_undeclare_publisher (C function), 26
z_undeclare_pull_subscriber (C function), 28
z_undeclare_queryable (C function), 29
z_undeclare_subscriber (C function), 27
z_value_t (C type), 8

z_value_t.encoding (C member), 8
z_value_t.payload (C member), 8
z_whatami_t (C enum), 3
z_whatami_t.Z_WHATAMI_CLIENT (C enumerator), 3
z_whatami_t.Z_WHATAMI_PEER (C enumerator), 3
z_whatami_t.Z_WHATAMI_ROUTER (C enumerator), 3
z_zint_t (C type), 6
zp_config_get (C function), 17
zp_config_insert (C function), 18
zp_keyexpr_canon_status_t (C enum), 3
zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_CONTAINS_SHARP_OR_QMARK

(C enumerator), 3
zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_CONTAINS_UNBOUND_DOLLAR

(C enumerator), 4
zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_DOLLAR_AFTER_DOLLAR_OR_STAR

(C enumerator), 3
zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_DOUBLE_STAR_AFTER_DOUBLE_STAR

(C enumerator), 3
zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_EMPTY_CHUNK

(C enumerator), 3
zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_LONE_DOLLAR_STAR

(C enumerator), 3
zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_SINGLE_STAR_AFTER_DOUBLE_STAR

(C enumerator), 3
zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_STARS_IN_CHUNK

(C enumerator), 3
zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_SUCCESS

(C enumerator), 3
zp_keyexpr_canonize_null_terminated (C func-

tion), 15
zp_keyexpr_equals_null_terminated (C function),

17
zp_keyexpr_includes_null_terminated (C func-

tion), 16
zp_keyexpr_intersect_null_terminated (C func-

tion), 16
zp_keyexpr_is_canon_null_terminated (C func-

tion), 15
zp_keyexpr_resolve (C function), 14
zp_read (C function), 31
zp_read_options_default (C function), 31
zp_read_options_t (C type), 10
zp_scouting_config_get (C function), 19
zp_scouting_config_insert (C function), 19
zp_send_keep_alive (C function), 32
zp_send_keep_alive_options_default (C func-

tion), 31
zp_send_keep_alive_options_t (C type), 11
zp_start_lease_task (C function), 31
zp_start_read_task (C function), 30
zp_stop_lease_task (C function), 31
zp_stop_read_task (C function), 30
zp_task_lease_options_default (C function), 31
zp_task_lease_options_t (C type), 10

Index 35

zenoh-pico, Release 0.6.0-beta.1

zp_task_read_options_default (C function), 30
zp_task_read_options_t (C type), 10

36 Index

	API Reference
	Zenoh Types
	Enums
	Data Structures
	Arrays
	Owned Types
	Closures

	Zenoh Functions
	Macros
	Primitives

	Index

