

zenoh-pico

The libzenoh-pico library provides a C client API for the zenoh protocol.

	API Reference
	Zenoh Types
	Enums

	Data Structures

	Arrays

	Owned Types

	Closures

	Zenoh Functions
	Macros

	Primitives

API Reference

Zenoh Types

Enums

	
enum z_whatami_t

	Whatami values, defined as a bitmask.

	
enumerator Z_WHATAMI_ROUTER

	Bitmask to filter Zenoh routers.

	
enumerator Z_WHATAMI_PEER

	Bitmask to filter for Zenoh peers.

	
enumerator Z_WHATAMI_CLIENT

	Bitmask to filter for Zenoh clients.

	
enum zp_keyexpr_canon_status_t

	Status values for keyexpr canonization operation.
Used as return value of canonization-related functions,
like z_keyexpr_is_canon() or z_keyexpr_canonize().

	
enumerator Z_KEYEXPR_CANON_SUCCESS

	The key expression is canon.

	
enumerator Z_KEYEXPR_CANON_LONE_DOLLAR_STAR

	The key contains a $* chunk, which must be replaced by *.

	
enumerator Z_KEYEXPR_CANON_SINGLE_STAR_AFTER_DOUBLE_STAR

	The key contains ** / *, which must be replaced by * / **.

	
enumerator Z_KEYEXPR_CANON_DOUBLE_STAR_AFTER_DOUBLE_STAR

	The key contains ** / **, which must be replaced by **.

	
enumerator Z_KEYEXPR_CANON_EMPTY_CHUNK

	The key contains empty chunks.

	
enumerator Z_KEYEXPR_CANON_STARS_IN_CHUNK

	The key contains a * in a chunk without being escaped by a DSL, which is
forbidden.

	
enumerator Z_KEYEXPR_CANON_DOLLAR_AFTER_DOLLAR_OR_STAR

	The key contains $*$ or $$, which is forbidden.

	
enumerator Z_KEYEXPR_CANON_CONTAINS_SHARP_OR_QMARK

	The key contains # or ?, which is forbidden.

	
enumerator Z_KEYEXPR_CANON_CONTAINS_UNBOUND_DOLLAR

	The key contains a $ which is not bound to a DSL.

	
enum z_sample_kind_t

	Sample kind values.

	
enumerator Z_SAMPLE_KIND_PUT

	The Sample was issued by a put operation.

	
enumerator Z_SAMPLE_KIND_DELETE

	The Sample was issued by a delete operation.

	
enum z_encoding_prefix_t

	Zenoh encoding values.
These values are based on already existing HTTP MIME types and extended with other relevant encodings.

	
enumerator Z_ENCODING_PREFIX_EMPTY

	Encoding not defined.

	
enumerator Z_ENCODING_PREFIX_APP_OCTET_STREAM

	application/octet-stream. Default value for all other cases. An unknown
file type should use this type. Z_ENCODING_PREFIX_APP_CUSTOM: Custom application type. Non IANA standard.

	
enumerator Z_ENCODING_PREFIX_TEXT_PLAIN

	text/plain. Default value for textual files. A textual file should be
human-readable and must not contain binary data. Z_ENCODING_PREFIX_APP_PROPERTIES: Application properties
type. Non IANA standard. Z_ENCODING_PREFIX_APP_JSON: application/json. JSON format.

	
enumerator Z_ENCODING_PREFIX_APP_SQL

	Application sql type. Non IANA standard. Z_ENCODING_PREFIX_APP_INTEGER: Application
integer type. Non IANA standard. Z_ENCODING_PREFIX_APP_FLOAT: Application float type. Non IANA standard.

	
enumerator Z_ENCODING_PREFIX_APP_XML

	application/xml. XML.

	
enumerator Z_ENCODING_PREFIX_APP_XHTML_XML

	application/xhtml+xml. XHTML.

	
enumerator Z_ENCODING_PREFIX_APP_X_WWW_FORM_URLENCODED

	
	application/x-www-form-urlencoded. The keys and values are
	encoded in key-value tuples separated by ‘&’, with a ‘=’ between the key and the value.

	Z_ENCODING_PREFIX_TEXT_JSON: Text JSON. Non IANA standard. Z_ENCODING_PREFIX_TEXT_HTML: text/html. HyperText
	Markup Language (HTML). Z_ENCODING_PREFIX_TEXT_XML: text/xml. Application/xml is recommended as of RFC
7303 (section 4.1), but text/xml is still used sometimes. Z_ENCODING_PREFIX_TEXT_CSS: text/css.
Cascading Style Sheets (CSS). Z_ENCODING_PREFIX_TEXT_CSV: text/csv. Comma-separated values (CSV).

	
enumerator Z_ENCODING_PREFIX_TEXT_JAVASCRIPT

	text/javascript. JavaScript.

	
enumerator Z_ENCODING_PREFIX_IMAGE_JPEG

	image/jpeg. JPEG images.

	
enumerator Z_ENCODING_PREFIX_IMAGE_PNG

	image/png. Portable Network Graphics.

	
enumerator Z_ENCODING_PREFIX_IMAGE_GIF

	image/gif. Graphics Interchange Format (GIF).

	
enum z_consolidation_mode_t

	Consolidation mode values.

	
enumerator Z_CONSOLIDATION_MODE_AUTO

	Let Zenoh decide the best consolidation mode depending on the query selector.

	
enumerator Z_CONSOLIDATION_MODE_NONE

	No consolidation is applied. Replies may come in any order and any number.

	
enumerator Z_CONSOLIDATION_MODE_MONOTONIC

	It guarantees that any reply for a given key expression will be monotonic in time
w.r.t. the previous received replies for the same key expression. I.e., for the same key expression multiple
replies may be received. It is guaranteed that two replies received at t1 and t2 will have timestamp
ts2 > ts1. It optimizes latency.

	
enumerator Z_CONSOLIDATION_MODE_LATEST

	It guarantees unicity of replies for the same key expression.
It optimizes bandwidth.

	
enum z_reliability_t

	Reliability values.

	
enumerator Z_RELIABILITY_BEST_EFFORT

	Defines reliability as BEST_EFFORT

	
enumerator Z_RELIABILITY_RELIABLE

	Defines reliability as RELIABLE

	
enum z_reply_tag_t

	Reply tag values.

	
enumerator Z_REPLY_TAG_DATA

	Tag identifying that the reply contains some data.

	
enumerator Z_REPLY_TAG_FINAL

	Tag identifying that the reply does not contain any data and that there will be no more
replies for this query.

	
enum z_congestion_control_t

	Congestion control values.

	
enumerator Z_CONGESTION_CONTROL_BLOCK

	Defines congestion control as BLOCK. Messages are not dropped in case of
congestion control.

	
enumerator Z_CONGESTION_CONTROL_DROP

	Defines congestion control as DROP. Messages are dropped in case
of congestion control.

	
enum z_priority_t

	Priority of Zenoh messages values.

	
enumerator _Z_PRIORITY_CONTROL

	Priority for Control messages.

	
enumerator Z_PRIORITY_REAL_TIME

	Priority for RealTime messages.

	
enumerator Z_PRIORITY_INTERACTIVE_HIGH

	Highest priority for Interactive messages.

	
enumerator Z_PRIORITY_INTERACTIVE_LOW

	Lowest priority for Interactive messages.

	
enumerator Z_PRIORITY_DATA_HIGH

	Highest priority for Data messages.

	
enumerator Z_PRIORITY_DATA

	Default priority for Data messages.

	
enumerator Z_PRIORITY_DATA_LOW

	Lowest priority for Data messages.

	
enumerator Z_PRIORITY_BACKGROUND

	Priority for Background traffic messages.

	
enum z_submode_t

	Subscription mode values.

	
enumerator Z_SUBMODE_PUSH

	Defines the subscription with a push paradigm.

	
enumerator Z_SUBMODE_PULL

	Defines the subscription with a pull paradigm.

	
enum z_query_target_t

	Query target values.

	
enumerator Z_QUERY_TARGET_BEST_MATCHING

	The nearest complete queryable if any else all matching queryables.

	
enumerator Z_QUERY_TARGET_ALL

	All matching queryables.

	
enumerator Z_QUERY_TARGET_ALL_COMPLETE

	A set of complete queryables.

Data Structures

	
typedef int z_zint_t

	Represents a variable-length encoding unsigned integer.

It is equivalent to the size of a size_t.

	
typedef int z_bytes_t

	Represents an array of bytes.

	
size_t len

	The length of the bytes array.

	
uint8_t *start

	A pointer to the bytes array.

	
typedef int z_id_t

	Represents a Zenoh ID.

In general, valid Zenoh IDs are LSB-first 128bit unsigned and non-zero integers.

	
uint8_t id[16]

	The array containing the 16 octets of a Zenoh ID.

	
typedef int z_string_t

	Represents a string without null-terminator.

	
size_t len

	The length of the string.

	
const char *val

	A pointer to the string.

	
typedef int z_keyexpr_t

	Represents a key expression in Zenoh.

Operations over z_keyexpr_t must be done using the provided functions:

	z_keyexpr()

	z_keyexpr_is_initialized()

	z_keyexpr_to_string()

	zp_keyexpr_resolve()

	
type z_config_t

	Represents a Zenoh configuration.

Configurations are usually used to set the parameters of a Zenoh session upon its opening.

Operations over z_config_t must be done using the provided functions:

	z_config_new()

	z_config_default()

	zp_config_get()

	zp_config_insert()

	
type z_session_t

	Represents a Zenoh session.

	
type z_subscriber_t

	Represents a Zenoh (push) Subscriber entity.

Operations over z_subscriber_t must be done using the provided functions:

	z_declare_subscriber()

	z_undeclare_subscriber()

	
type z_pull_subscriber_t

	Represents a Zenoh Pull Subscriber entity.

Operations over z_pull_subscriber_t must be done using the provided functions:

	z_declare_pull_subscriber()

	z_undeclare_pull_subscriber()

	z_subscriber_pull()

	
type z_publisher_t

	Represents a Zenoh Publisher entity.

Operations over z_publisher_t must be done using the provided functions:

	z_declare_publisher()

	z_undeclare_publisher()

	z_publisher_put()

	z_publisher_delete()

	
type z_queryable_t

	Represents a Zenoh Queryable entity.

Operations over z_queryable_t must be done using the provided functions:

	z_declare_queryable()

	z_undeclare_queryable()

	
typedef int z_encoding_t

	Represents the encoding of a payload, in a MIME-like format.

	
z_encoding_prefix_t prefix

	The integer prefix of this encoding.

	
z_bytes_t suffix

	The suffix of this encoding. It MUST be a valid UTF-8 string.

	
typedef int z_value_t

	Represents a Zenoh value.

	
z_encoding_t encoding

	The encoding of the payload.

	
z_bytes_t payload

	The payload of this zenoh value.

	
type z_subscriber_options_t

	Represents the set of options that can be applied to a (push) subscriber,
upon its declaration via z_declare_subscriber().

	
z_reliability_t reliability

	The subscription reliability.

	
type z_pull_subscriber_options_t

	Represents the set of options that can be applied to a pull subscriber,
upon its declaration via z_declare_pull_subscriber().

	
z_reliability_t reliability

	The subscription reliability.

	
type z_query_consolidation_t

	Represents the replies consolidation to apply on replies to a z_get().

	
z_consolidation_mode_t mode

	Defines the consolidation mode to apply to the replies.

	
type z_publisher_options_t

	Represents the set of options that can be applied to a publisher,
upon its declaration via z_declare_publisher().

	
z_congestion_control_t congestion_control

	The congestion control to apply when routing messages from this

	publisher.
	z_priority_t priority: The priority of messages issued by this publisher.

	
type z_queryable_options_t

	Represents the set of options that can be applied to a queryable,
upon its declaration via z_declare_queryable().

	
_Bool complete

	The completeness of the queryable.

	
type z_query_reply_options_t

	Represents the set of options that can be applied to a query reply,
sent via z_query_reply().

	
z_encoding_t encoding

	The encoding of the payload.

	
type z_put_options_t

	Represents the set of options that can be applied to the put operation,
whenever issued via z_put().

	
z_encoding_t encoding

	The encoding of the payload.

	
z_congestion_control_t congestion_control

	The congestion control to apply when routing this message.

	
z_priority_t priority

	The priority of this message when routed.

	
type z_delete_options_t

	Represents the set of options that can be applied to the delete operation,
whenever issued via z_delete().

	
z_congestion_control_t congestion_control

	The congestion control to apply when routing this message.

	
z_priority_t priority

	The priority of this message when router.

	
type z_publisher_put_options_t

	Represents the set of options that can be applied to the put operation by a previously declared publisher,
whenever issued via z_publisher_put().

	
z_encoding_t encoding

	The encoding of the payload.

	
type z_publisher_delete_options_t

	Represents the set of options that can be applied to the delete operation by a previously declared publisher,
whenever issued via z_publisher_delete().

	
type z_get_options_t

	Represents the set of options that can be applied to the get operation,
whenever issued via z_get().

	
z_query_target_t target

	The queryables that should be targeted by this get.

	
z_query_consolidation_t consolidation

	The replies consolidation strategy to apply on replies.

	
z_value_t value

	The payload to include in the query.

	
typedef int z_sample_t

	Represents a data sample.

A sample is the value associated to a given z_keyexpr_t at a given point in time.

	
z_keyexpr_t keyexpr

	The keyexpr of this data sample.

	
z_bytes_t payload

	The value of this data sample.

	
z_encoding_t encoding

	The encoding of the value of this data sample.

	
z_sample_kind_t kind

	The kind of this data sample (PUT or DELETE).

	
z_timestamp_t timestamp

	The timestamp of this data sample.

	
typedef int z_hello_t

	Represents the content of a hello message returned by a zenoh entity as a reply to a scout message.

	
uint8_t whatami

	The kind of zenoh entity.

	
z_bytes_t zid

	The Zenoh ID of the scouted entity (empty if absent).

	
z_str_array_t locators

	The locators of the scouted entity.

	
typedef int z_reply_t

	Represents the reply to a query.

	
z_reply_data_t data

	the content of the reply.

	
typedef int z_reply_data_t

	Represents the content of a reply to a query.

	
z_sample_t sample

	The _z_sample_t containing the key and value of the reply.

	
z_bytes_t replier_id

	The id of the replier that sent this reply.

	
type zp_task_read_options_t

	Represents the set of options that can be applied to the read task,
whenever issued via zp_start_read_task().

	
type zp_task_lease_options_t

	Represents the set of options that can be applied to the lease task,
whenever issued via zp_start_lease_task().

	
type zp_read_options_t

	Represents the set of options that can be applied to the read operation,
whenever issued via zp_read().

	
type zp_send_keep_alive_options_t

	Represents the set of options that can be applied to the keep alive send,
whenever issued via zp_send_keep_alive().

Arrays

	
type z_str_array_t

	Represents an array of char *.

Operations over z_str_array_t must be done using the provided functions:

	char *z_str_array_get(z_str_array_t *a, size_t k);

	size_t z_str_array_len(z_str_array_t *a);

	_Bool z_str_array_array_is_empty(z_str_array_t *a);

Owned Types

Like most z_owned_X_t types, you may obtain an instance of z_X_t by loaning it using z_X_loan(&val).
The z_loan(val) macro, available if your compiler supports C11’s _Generic, is equivalent to writing z_X_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said instance, as this implies the instance’s inners were moved.
To make this fact more obvious when reading your code, consider using z_move(val) instead of &val as the argument.
After a move, val will still exist, but will no longer be valid. The destructors are double-free-safe, but other functions will still trust that your val is valid.

To check if val is still valid, you may use z_X_check(&val) or z_check(val) if your compiler supports _Generic, which will return true if val is valid.

	
type z_owned_bytes_t

	A zenoh-allocated z_bytes_t.

	
type z_owned_str_t

	A zenoh-allocated char *.

	
type z_owned_keyexpr_t

	A zenoh-allocated z_keyexpr_t.

	
type z_owned_config_t

	A zenoh-allocated z_config_t.

	
type z_owned_session_t

	A zenoh-allocated z_session_t.

	
type z_owned_subscriber_t

	A zenoh-allocated z_subscriber_t.

	
type z_owned_pull_subscriber_t

	A zenoh-allocated z_pull_subscriber_t.

	
type z_owned_publisher_t

	A zenoh-allocated z_publisher_t.

	
type z_owned_queryable_t

	A zenoh-allocated z_queryable_t.

	
type z_owned_reply_t

	A zenoh-allocated z_reply_t.

	
type z_owned_str_array_t

	A zenoh-allocated z_str_array_t.

Closures

	A closure is a structure that contains all the elements for stateful, memory-leak-free callbacks:
	
	context: a pointer to an arbitrary state.

	call: the typical callback function. context will be passed as its last argument.

	drop: allows the callback’s state to be freed. context will be passed as its last argument.

Closures are not guaranteed not to be called concurrently.

	It is guaranteed that:
	
	call will never be called once drop has started.

	drop will only be called once, and after every call has ended.

	The two previous guarantees imply that call and drop are never called concurrently.

	
type z_owned_closure_sample_t

	Represents the sample closure.

A closure is a structure that contains all the elements for stateful, memory-leak-free callbacks.

	
_z_data_handler_t call

	void *call(const struct z_sample_t*, const void *context) is the callback function.

	
_z_dropper_handler_t drop

	void *drop(void*) allows the callback’s state to be freed.

	
void *context

	a pointer to an arbitrary state.

	
type z_owned_closure_query_t

	Represents the query callback closure.

A closure is a structure that contains all the elements for stateful, memory-leak-free callbacks.

	
_z_questionable_handler_t call

	void (*_z_questionable_handler_t)(z_query_t *query, void *arg) is the callback

	function.
	_z_dropper_handler_t drop: void *drop(void*) allows the callback’s state to be freed.
void *context: a pointer to an arbitrary state.

	
type z_owned_closure_reply_t

	Represents the query reply callback closure.

A closure is a structure that contains all the elements for stateful, memory-leak-free callbacks.

	
z_owned_reply_handler_t call

	void (*z_owned_reply_handler_t)(z_owned_reply_t reply, void *arg) is the callback

	function.
	_z_dropper_handler_t drop: void *drop(void*) allows the callback’s state to be freed.
void *context: a pointer to an arbitrary state.

	
type z_owned_closure_hello_t

	Represents the Zenoh ID callback closure.

A closure is a structure that contains all the elements for stateful, memory-leak-free callbacks.

	
z_owned_hello_handler_t call

	void (*z_owned_hello_handler_t)(const z_owned_hello_t *hello, void *arg) is the

	callback function.
	_z_dropper_handler_t drop: void *drop(void*) allows the callback’s state to be freed.
void *context: a pointer to an arbitrary state.

	
type z_owned_closure_zid_t

	Represents the Zenoh ID callback closure.

A closure is a structure that contains all the elements for stateful, memory-leak-free callbacks.

	
z_id_handler_t call

	void (*z_id_handler_t)(const z_id_t *id, void *arg) is the callback function.

	
_z_dropper_handler_t drop

	void *drop(void*) allows the callback’s state to be freed.

	
void *context

	a pointer to an arbitrary state.

Zenoh Functions

Macros

	
z_loan(x)

	

	
z_move(x)

	Defines a generic function for moving any of the z_owned_X_t types.

	Parameters

	
	x – The instance to move.

	Returns

	Returns the instance associated with x.

	
z_check(x)

	

	
z_clone(x)

	Defines a generic function for cloning any of the z_owned_X_t types.

	Parameters

	
	x – The instance to clone.

	Returns

	Returns the cloned instance of x.

	
z_drop(x)

	Defines a generic function for droping any of the z_owned_X_t types.

	Parameters

	
	x – The instance to drop.

	
z_closure()

	Defines a variadic macro to ease the definition of callback closures.

	Parameters

	
	callback – the typical callback function. context will be passed as its last argument.

	droper – allows the callback’s state to be freed. context will be passed as its last argument.

	context – a pointer to an arbitrary state.

	Returns

	Returns the new closure.

	
z_null(x)

	Defines a generic function for making null object of any of the z_owned_X_t types.

	Returns

	Returns the unitialized instance of x.

Primitives

	
z_keyexpr_t z_keyexpr(const char *name)

	Constructs a z_keyexpr_t departing from a string.
It is a loaned key expression that aliases name.
Unlike it’s counterpart in zenoh-c, this function does not test passed expression to correctness.

	Parameters

	
	name – Pointer to string representation of the keyexpr as a null terminated string.

	Returns

	The z_keyexpr_t corresponding to the given string.

	
z_owned_str_t z_keyexpr_to_string(z_keyexpr_t keyexpr)

	Get null-terminated string departing from a z_keyexpr_t.

If given keyexpr contains a declared keyexpr, the resulting owned string will be unitialized.
In that case, the user must use zp_keyexpr_resolve() to resolve the nesting declarations
and get its full expanded representation.

	Parameters

	
	keyexpr – A loaned instance of z_keyexpr_t

	Returns

	The z_owned_str_t containing key expression string representation if it’s possible

	
z_owned_str_t zp_keyexpr_resolve(z_session_t zs, z_keyexpr_t keyexpr)

	Constructs a null-terminated string departing from a z_keyexpr_t for a given z_session_t.
The user is responsible of droping the returned string using z_free.

	Parameters

	
	zs – A loaned instance of the the z_session_t to resolve the keyexpr.

	keyexpr – A loaned instance of z_keyexpr_t to be resolved.

	Returns

	The string representation of a keyexpr for a given session.

	
_Bool z_keyexpr_is_initialized(const z_keyexpr_t *keyexpr)

	Checks if a given keyexpr is valid.

	Parameters

	
	keyexpr – A loaned instance of z_keyexpr_t to be checked.

	Returns

	Returns true if the keyexpr is valid, or false otherwise.

	
int8_t z_keyexpr_is_canon(const char *start, size_t len)

	Check if a given keyexpr is valid and in its canonical form.

	Parameters

	
	start – Pointer to the keyexpr in its string representation as a non-null terminated string.

	len – Number of characters in start.

	Returns

	Returns 0 if the passed string is a valid (and canon) key expression, or a negative value otherwise.
Error codes are defined in zp_keyexpr_canon_status_t.

	
int8_t zp_keyexpr_is_canon_null_terminated(const char *start)

	Check if a given keyexpr is valid and in its canonical form.

	Parameters

	
	start – Pointer to the keyexpr in its string representation as a null terminated string.

	len – Number of characters in start.

	Returns

	Returns 0 if the passed string is a valid (and canon) key expression, or a negative value otherwise.
Error codes are defined in zp_keyexpr_canon_status_t.

	
int8_t z_keyexpr_canonize(char *start, size_t *len)

	Canonization of a given keyexpr in its its string representation.
The canonization is performed over the passed string, possibly shortening it by modifying len.

	Parameters

	
	start – Pointer to the keyexpr in its string representation as a non-null terminated string.

	len – Number of characters in start.

	Returns

	Returns 0 if the canonization is successful, or a negative value otherwise.
Error codes are defined in zp_keyexpr_canon_status_t.

	
int8_t zp_keyexpr_canonize_null_terminated(char *start)

	Canonization of a given keyexpr in its its string representation.
The canonization is performed over the passed string, possibly shortening it by modifying len.

	Parameters

	
	start – Pointer to the keyexpr in its string representation as a null terminated string.

	len – Number of characters in start.

	Returns

	Returns 0 if the canonization is successful, or a negative value otherwise.
Error codes are defined in zp_keyexpr_canon_status_t.

	
int8_t z_keyexpr_includes(z_keyexpr_t l, z_keyexpr_t r)

	Check if a given keyexpr contains another keyexpr in its set.

	Parameters

	
	l – The first keyexpr.

	r – The second keyexpr.

	Returns

	Returns 0 if l includes r, i.e. the set defined by l contains every key belonging to the set

defined by r. Otherwise, it returns a -1, or other negative value for errors.

	
int8_t zp_keyexpr_includes_null_terminated(const char *l, const char *r)

	Check if a given keyexpr contains another keyexpr in its set.

	Parameters

	
	l – Pointer to the keyexpr in its string representation as a null terminated string.

	llen – Number of characters in l.

	r – Pointer to the keyexpr in its string representation as a null terminated string.

	rlen – Number of characters in r.

	Returns

	Returns 0 if l includes r, i.e. the set defined by l contains every key belonging to the set

defined by r. Otherwise, it returns a -1, or other negative value for errors.

	
int8_t z_keyexpr_intersects(z_keyexpr_t l, z_keyexpr_t r)

	Check if a given keyexpr intersects with another keyexpr.

	Parameters

	
	l – The first keyexpr.

	r – The second keyexpr.

	Returns

	Returns 0 if the keyexprs intersect, i.e. there exists at least one key which is contained in both of the

sets defined by l and r. Otherwise, it returns a -1, or other negative value for errors.

	
int8_t zp_keyexpr_intersect_null_terminated(const char *l, const char *r)

	Check if a given keyexpr intersects with another keyexpr.

	Parameters

	
	l – Pointer to the keyexpr in its string representation as a null terminated string.

	llen – Number of characters in l.

	r – Pointer to the keyexpr in its string representation as a null terminated string.

	rlen – Number of characters in r.

	Returns

	Returns 0 if the keyexprs intersect, i.e. there exists at least one key which is contained in both of the

sets defined by l and r. Otherwise, it returns a -1, or other negative value for errors.

	
int8_t z_keyexpr_equals(z_keyexpr_t l, z_keyexpr_t r)

	Check if a two keyexprs are equal.

	Parameters

	
	l – The first keyexpr.

	r – The second keyexpr.

	Returns

	Returns 0 if both l and r are equal. Otherwise, it returns a -1, or other negative value for

errors.

	
int8_t zp_keyexpr_equals_null_terminated(const char *l, const char *r)

	Check if a two keyexprs are equal.

	Parameters

	
	l – Pointer to the keyexpr in its string representation as a null terminated string.

	llen – Number of characters in l.

	r – Pointer to the keyexpr in its string representation as a null terminated string.

	rlen – Number of characters in r.

	Returns

	Returns 0 if both l and r are equal. Otherwise, it returns a -1, or other negative value for

errors.

	
z_owned_config_t z_config_new(void)

	Return a new, zenoh-allocated, empty configuration.
It consists in an empty set of properties for zenoh session configuration.

Like most z_owned_X_t types, you may obtain an instance of z_owned_config_t by loaning it using
z_config_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic, is
equivalent to writing z_config_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_config_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

	Returns

	Returns a new, zenoh-allocated, empty configuration.

	
z_owned_config_t z_config_default(void)

	Return a new, zenoh-allocated, default configuration.
It consists in a default set of properties for zenoh session configuration.

Like most z_owned_X_t types, you may obtain an instance of z_owned_config_t by loaning it using
z_config_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic, is
equivalent to writing z_config_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_config_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

	Returns

	Returns a new, zenoh-allocated, default configuration.

	
const char *zp_config_get(z_config_t config, uint8_t key)

	Gets the property with the given integer key from the configuration.

	Parameters

	
	config – A loaned instance of z_owned_config_t.

	key – Integer key for the requested property.

	Returns

	Returns the property with the given integer key from the configuration.

	
int8_t zp_config_insert(z_config_t config, uint8_t key, z_string_t value)

	Inserts or replaces the property with the given integer key in the configuration.

	Parameters

	
	config – A loaned instance of z_owned_config_t.

	key – Integer key for the property to be inserted.

	value – Property value to be inserted.

	Returns

	Returns 0 if the insertion is successful, or a negative value otherwise.

	
z_owned_scouting_config_t z_scouting_config_default(void)

	Return a new, zenoh-allocated, default scouting configuration.
It consists in a default set of properties for scouting configuration.

Like most z_owned_X_t types, you may obtain an instance of z_owned_scouting_config_t by loaning it
using
z_scouting_config_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic,
is equivalent to writing z_config_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_scouting_config_check(&val) or z_check(val) if your
compiler supports _Generic, which will return true if val is valid, or false otherwise.

	Returns

	Returns a new, zenoh-allocated, default scouting configuration.

	
z_owned_scouting_config_t z_scouting_config_from(z_config_t config)

	Return a new, zenoh-allocated, scouting configuration extracted from a z_owned_config_t.
It consists in a default set of properties for scouting configuration.

Like most z_owned_X_t types, you may obtain an instance of z_owned_scouting_config_t by loaning it
using
z_scouting_config_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic,
is equivalent to writing z_config_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_scouting_config_check(&val) or z_check(val) if your
compiler supports _Generic, which will return true if val is valid, or false otherwise.

	Parameters

	
	config – A loaned instance of z_owned_config_t.

	Returns

	Returns a new, zenoh-allocated, default scouting configuration.

	
const char *zp_scouting_config_get(z_scouting_config_t config, uint8_t key)

	Gets the property with the given integer key from the configuration.

	Parameters

	
	config – A loaned instance of z_owned_scouting_config_t.

	key – Integer key for the requested property.

	Returns

	Returns the property with the given integer key from the configuration.

	
int8_t zp_scouting_config_insert(z_scouting_config_t config, uint8_t key, z_string_t value)

	Inserts or replaces the property with the given integer key in the configuration.

	Parameters

	
	config – A loaned instance of z_owned_scouting_config_t.

	key – Integer key for the property to be inserted.

	value – Property value to be inserted.

	Returns

	Returns 0 if the insertion is successful, or a negative value otherwise.

	
z_encoding_t z_encoding_default(void)

	Constructs a default encoding.

	Returns

	Returns the constructed z_encoding_t.

	
z_query_target_t z_query_target_default(void)

	Constructs a default query target.

	Returns

	Returns the constructed z_query_target_t.

	
z_query_consolidation_t z_query_consolidation_auto(void)

	Automatic query consolidation strategy selection.

A query consolidation strategy will automatically be selected depending the query selector.
If the selector contains time range properties, no consolidation is performed.
Otherwise the z_query_consolidation_latest() strategy is used.

	Returns

	Returns the constructed z_query_consolidation_t.

	
z_query_consolidation_t z_query_consolidation_default(void)

	Constructs a default z_query_consolidation_t.

	Returns

	Returns the constructed z_query_consolidation_t.

	
z_query_consolidation_t z_query_consolidation_latest(void)

	Latest consolidation.

This strategy optimizes bandwidth on all links in the system but will provide a very poor latency.

	Returns

	Returns the constructed z_query_consolidation_t.

	
z_query_consolidation_t z_query_consolidation_monotonic(void)

	Monotonic consolidation.

This strategy offers the best latency. Replies are directly transmitted to the application when received
without needing to wait for all replies. This mode does not garantee that there will be no duplicates.

	Returns

	Returns the constructed z_query_consolidation_t.

	
z_query_consolidation_t z_query_consolidation_none(void)

	No consolidation.

This strategy is usefull when querying timeseries data bases or when using quorums.

	Returns

	Returns the constructed z_query_consolidation_t.

	
z_bytes_t z_query_parameters(const z_query_t *query)

	Get a query’s value selector by aliasing it.

	Parameters

	
	query – Pointer to the query to get the value selector from.

	Returns

	Returns the value selector wrapped as a z_bytes_t, since value selector is a user-defined representation.

	
z_keyexpr_t z_query_keyexpr(const z_query_t *query)

	Get a query’s key by aliasing it.

	Parameters

	
	query – Pointer to the query to get keyexpr from.

	Returns

	Returns the z_keyexpr_t associated to the query.

	
z_value_t z_query_value(const z_query_t *query)

	Get a query’s payload value by aliasing it.
Note: This API has been marked as unstable: it works as advertised, but we may change it in a future release.

	Parameters

	
	query – Pointer to the query to get the value selector from.

	Returns

	Returns the payload value wrapped as a z_value_t, since payload value is a user-defined representation.

	
_Bool z_value_is_initialized(z_value_t *value)

	Checks if a given value is valid.

	Parameters

	
	value – A loaned instance of z_value_t to be checked.

	Returns

	Returns true if the value is valid, or false otherwise.

	
z_owned_closure_sample_t z_closure_sample(_z_data_handler_t call, _z_dropper_handler_t drop, void *context)

	Return a new sample closure.
It consists on a structure that contains all the elements for stateful, memory-leak-free callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_closure_sample_t by loaning it using
z_closure_sample_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic,
is equivalent to writing z_closure_sample_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_closure_sample_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

	Parameters

	
	call – the typical callback function. context will be passed as its last argument.

	drop – allows the callback’s state to be freed. context will be passed as its last argument.

	context – a pointer to an arbitrary state.

	Returns

	Returns a new sample closure.

	
z_owned_closure_query_t z_closure_query(_z_questionable_handler_t call, _z_dropper_handler_t drop, void *context)

	Return a new query closure.
It consists on a structure that contains all the elements for stateful, memory-leak-free callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_closure_query_t by loaning it using
z_closure_query_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic, is
equivalent to writing z_closure_query_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_closure_query_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

	Parameters

	
	call – the typical callback function. context will be passed as its last argument.

	drop – allows the callback’s state to be freed. context will be passed as its last argument.

	context – a pointer to an arbitrary state.

	Returns

	Returns a new query closure.

	
z_owned_closure_reply_t z_closure_reply(z_owned_reply_handler_t call, _z_dropper_handler_t drop, void *context)

	Return a new reply closure.
It consists on a structure that contains all the elements for stateful, memory-leak-free callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_closure_reply_t by loaning it using
z_closure_reply_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic, is
equivalent to writing z_closure_reply_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_closure_reply_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

	Parameters

	
	call – the typical callback function. context will be passed as its last argument.

	drop – allows the callback’s state to be freed. context will be passed as its last argument.

	context – a pointer to an arbitrary state.

	Returns

	Returns a new reply closure.

	
z_owned_closure_hello_t z_closure_hello(z_owned_hello_handler_t call, _z_dropper_handler_t drop, void *context)

	Return a new hello closure.
It consists on a structure that contains all the elements for stateful, memory-leak-free callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_closure_hello_t by loaning it using
z_closure_hello_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic,
is equivalent to writing z_closure_hello_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_closure_hello_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

	Parameters

	
	call – the typical callback function. context will be passed as its last argument.

	drop – allows the callback’s state to be freed. context will be passed as its last argument.

	context – a pointer to an arbitrary state.

	Returns

	Returns a new hello closure.

	
z_owned_closure_zid_t z_closure_zid(z_id_handler_t call, _z_dropper_handler_t drop, void *context)

	Return a new zid closure.
It consists on a structure that contains all the elements for stateful, memory-leak-free callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_closure_zid_t by loaning it using
z_closure_zid_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic, is
equivalent to writing z_closure_zid_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_closure_zid_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

	Parameters

	
	call – the typical callback function. context will be passed as its last argument.

	drop – allows the callback’s state to be freed. context will be passed as its last argument.

	context – a pointer to an arbitrary state.

	Returns

	Returns a new zid closure.

	
int8_t z_scout(z_owned_scouting_config_t *config, z_owned_closure_hello_t *callback)

	Primitives

Looks for other Zenoh-enabled entities like routers and/or peers.

	Parameters

	
	config – A moved instance of z_owned_scouting_config_t containing the set properties to configure the

scouting. callback: A moved instance of z_owned_closure_hello_t containg the callbacks to be called.

	Returns

	Returns 0 if the scouting is successful triggered, or a negative value otherwise.

	
z_owned_session_t z_open(z_owned_config_t *config)

	Opens a Zenoh session.

Like most z_owned_X_t types, you may obtain an instance of z_owned_session_t by loaning it using
z_session_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic, is
equivalent to writing z_session_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_session_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

	Parameters

	
	config – A moved instance of z_owned_config_t containing the set properties to configure the session.

	Returns

	A z_owned_session_t with either a valid open session or a failing session.
Should the session opening fail, z_check(val) ing the returned value will return false.

	
int8_t z_close(z_owned_session_t *zs)

	Closes a Zenoh session.

	Parameters

	
	zs – A moved instance of the the z_owned_session_t to close.

	Returns

	Returns 0 if the session is successful closed, or a negative value otherwise.

	
int8_t z_info_peers_zid(const z_session_t zs, z_owned_closure_zid_t *callback)

	Fetches the Zenoh IDs of all connected peers.

callback will be called once for each ID. It is guaranteed to never be called concurrently,
and to be dropped before this function exits.

	Parameters

	
	zs – A loaned instance of the the z_session_t to inquiry.

	callback – A moved instance of z_owned_closure_zid_t containg the callbacks to be called.

	Returns

	Returns 0 if the info is successful triggered, or a negative value otherwise.

	
int8_t z_info_routers_zid(const z_session_t zs, z_owned_closure_zid_t *callback)

	Fetches the Zenoh IDs of all connected routers.

callback will be called once for each ID. It is guaranteed to never be called concurrently,
and to be dropped before this function exits.

	Parameters

	
	zs – A loaned instance of the the z_session_t to inquiry.

	callback – A moved instance of z_owned_closure_zid_t containg the callbacks to be called.

	Returns

	Returns 0 if the info is successful triggered, or a negative value otherwise.

	
z_id_t z_info_zid(const z_session_t zs)

	Get the local Zenoh ID associated to a given Zenoh session.

Unless the z_session_t is invalid, that ID is guaranteed to be non-zero.
In other words, this function returning an array of 16 zeros means you failed to pass it a valid session.

	Parameters

	
	zs – A loaned instance of the the z_session_t to inquiry.

	Returns

	Returns the local Zenoh ID of the given z_session_t.

	
z_put_options_t z_put_options_default(void)

	Constructs the default values for the put operation.

	Returns

	Returns the constructed z_put_options_t.

	
z_delete_options_t z_delete_options_default(void)

	Constructs the default values for the delete operation.

	Returns

	Returns the constructed z_delete_options_t.

	
int8_t z_put(z_session_t zs, z_keyexpr_t keyexpr, const uint8_t *payload, z_zint_t payload_len, const z_put_options_t *options)

	Puts data for a given keyexpr.

	Parameters

	
	zs – A loaned instance of the the z_session_t through where data will be put.

	keyexpr – A loaned instance of z_keyexpr_t to put.

	payload – Pointer to the data to put.

	payload_len – The length of the payload.

	options – The put options to be applied in the put operation.

	Returns

	Returns 0 if the put operation is successful, or a negative value otherwise.

	
int8_t z_delete(z_session_t zs, z_keyexpr_t keyexpr, const z_delete_options_t *options)

	Deletes data from a given keyexpr.

	Parameters

	
	zs – A loaned instance of the the z_session_t through where data will be put.

	keyexpr – A loaned instance of z_keyexpr_t to put.

	options – The delete options to be applied in the delete operation.

	Returns

	Returns 0 if the delete operation is successful, or a negative value otherwise.

	
z_get_options_t z_get_options_default(void)

	Constructs the default values for the get operation.

	Returns

	Returns the constructed z_get_options_t.

	
int8_t z_get(z_session_t zs, z_keyexpr_t keyexpr, const char *parameters, z_owned_closure_reply_t *callback, const z_get_options_t *options)

	Issues a distributed query for a given keyexpr.

	Parameters

	
	zs – A loaned instance of the the z_session_t through where data will be put.

	keyexpr – A loaned instance of z_keyexpr_t to put.

	parameters – Pointer to the parameters as a null-terminated string.

	callback – A moved instance of z_owned_closure_reply_t containg the callbacks to be called.

	options – The get options to be aplied in the distributed query.

	Returns

	Returns 0 if the put operation is successful, or a negative value otherwise.

	
z_owned_keyexpr_t z_declare_keyexpr(z_session_t zs, z_keyexpr_t keyexpr)

	Declares a keyexpr, so that it is internally mapped into into a numerical id.

This numerical id is used on the network to save bandwidth and ease the retrieval of the concerned resource
in the routing tables.

Like most z_owned_X_t types, you may obtain an instance of z_owned_keyexpr_t by loaning it using
z_keyexpr_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic, is
equivalent to writing z_keyexpr_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_keyexpr_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

	Parameters

	
	zs – A loaned instance of the the z_session_t where to declare the keyexpr.

	keyexpr – A loaned instance of z_keyexpr_t to declare.

	Returns

	A z_owned_keyexpr_t with either a valid or invalid keyexpr.
Should the keyexpr be invalid, z_check(val) ing the returned value will return false.

	
int8_t z_undeclare_keyexpr(z_session_t zs, z_owned_keyexpr_t *keyexpr)

	Undeclares the keyexpr generated by a call to z_declare_keyexpr().

	Parameters

	
	zs – A loaned instance of the the z_session_t through where data will be put.

	keyexpr – A moved instance of z_owned_keyexpr_t to undeclare.

	Returns

	Returns 0 if the undeclare keyexpr operation is successful, or a negative value otherwise.

	
z_publisher_options_t z_publisher_options_default(void)

	Constructs the default values for the publisher entity.

	Returns

	Returns the constructed z_publisher_options_t.

	
z_owned_publisher_t z_declare_publisher(z_session_t zs, z_keyexpr_t keyexpr, const z_publisher_options_t *options)

	Declares a publisher for the given keyexpr.

Data can be put and deleted with this publisher with the help of the
z_publisher_put() and z_publisher_delete() functions.

Like most z_owned_X_t types, you may obtain an instance of z_owned_publisher_t by loaning it using
z_publisher_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic, is
equivalent to writing z_publisher_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_publisher_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

	Parameters

	
	zs – A loaned instance of the the z_session_t where to declare the publisher.

	keyexpr – A loaned instance of z_keyexpr_t to associate with the publisher.

	options – The options to apply to the publisher. If NULL is passed, the default options will be applied.

	Returns

	A z_owned_publisher_t with either a valid publisher or a failing publisher.
Should the publisher be invalid, z_check(val) ing the returned value will return false.

	
int8_t z_undeclare_publisher(z_owned_publisher_t *pub)

	Undeclares the publisher generated by a call to z_declare_publisher().

	Parameters

	
	pub – A moved instance of z_owned_publisher_t to undeclare.

	Returns

	Returns 0 if the undeclare publisher operation is successful, or a negative value otherwise.

	
z_publisher_put_options_t z_publisher_put_options_default(void)

	Constructs the default values for the put operation via a publisher entity.

	Returns

	Returns the constructed z_publisher_put_options_t.

	
z_publisher_delete_options_t z_publisher_delete_options_default(void)

	Constructs the default values for the delete operation via a publisher entity.

	Returns

	Returns the constructed z_publisher_delete_options_t.

	
int8_t z_publisher_put(const z_publisher_t pub, const uint8_t *payload, size_t len, const z_publisher_put_options_t *options)

	Puts data for the keyexpr associated to the given publisher.

	Parameters

	
	pub – A loaned instance of z_publisher_t from where to put the data.

	options – The options to apply to the put operation. If NULL is passed, the default options will be applied.

	Returns

	Returns 0 if the put operation is successful, or a negative value otherwise.

	
int8_t z_publisher_delete(const z_publisher_t pub, const z_publisher_delete_options_t *options)

	Deletes data from the keyexpr associated to the given publisher.

	Parameters

	
	pub – A loaned instance of z_publisher_t from where to delete the data.

	options – The options to apply to the delete operation. If NULL is passed, the default options will be applied.

	Returns

	Returns 0 if the delete operation is successful, or a negative value otherwise.

	
z_subscriber_options_t z_subscriber_options_default(void)

	Constructs the default values for the subscriber entity.

	Returns

	Returns the constructed z_subscriber_options_t.

	
z_owned_subscriber_t z_declare_subscriber(z_session_t zs, z_keyexpr_t keyexpr, z_owned_closure_sample_t *callback, const z_subscriber_options_t *options)

	Declares a (push) subscriber for the given keyexpr.

Received data is processed by means of callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_subscriber_t by loaning it using
z_subscriber_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic, is
equivalent to writing z_subscriber_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_subscriber_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

	Parameters

	
	zs – A loaned instance of the the z_session_t where to declare the subscriber.

	keyexpr – A loaned instance of z_keyexpr_t to associate with the subscriber.

	callback – A moved instance of z_owned_closure_sample_t containg the callbacks to be called and the

context to pass to them. options: The options to apply to the subscriber. If NULL is passed, the default options
will be applied.

	Returns

	A z_owned_subscriber_t with either a valid subscriber or a failing subscriber.
Should the subscriber be invalid, z_check(val) ing the returned value will return false.

	
int8_t z_undeclare_subscriber(z_owned_subscriber_t *sub)

	Undeclares the (push) subscriber generated by a call to z_declare_subscriber().

	Parameters

	
	sub – A moved instance of z_owned_subscriber_t to undeclare.

	Returns

	Returns 0 if the undeclare (push) subscriber operation is successful, or a negative value otherwise.

	
z_pull_subscriber_options_t z_pull_subscriber_options_default(void)

	Constructs the default values for the pull subscriber entity.

	Returns

	Returns the constructed z_pull_subscriber_options_t.

	
z_owned_pull_subscriber_t z_declare_pull_subscriber(z_session_t zs, z_keyexpr_t keyexpr, z_owned_closure_sample_t *callback, const z_pull_subscriber_options_t *options)

	Declares a pull subscriber for the given keyexpr.

Data can be pulled with this subscriber with the help of the
z_pull() function. Received data is processed by means of callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_pull_subscriber_t by loaning it
using z_pull_subscriber_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s
_Generic, is equivalent to writing z_pull_subscriber_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_pull_subscriber_check(&val) or z_check(val) if your
compiler supports _Generic, which will return true if val is valid, or false otherwise.

	Parameters

	
	zs – A loaned instance of the the z_session_t where to declare the subscriber.

	keyexpr – A loaned instance of z_keyexpr_t to associate with the subscriber.

	callback – A moved instance of z_owned_closure_sample_t containg the callbacks to be called and the

context to pass to them. options: The options to apply to the pull subscriber. If NULL is passed, the default
options will be applied.

	Returns

	A z_owned_pull_subscriber_t with either a valid subscriber or a failing subscriber.
Should the pull subscriber be invalid, z_check(val) ing the returned value will return false.

	
int8_t z_undeclare_pull_subscriber(z_owned_pull_subscriber_t *sub)

	Undeclares the pull subscriber generated by a call to z_declare_pull_subscriber().

	Parameters

	
	sub – A moved instance of z_owned_pull_subscriber_t to undeclare.

	Returns

	Returns 0 if the undeclare pull subscriber operation is successful, or a negative value otherwise.

	
int8_t z_subscriber_pull(const z_pull_subscriber_t sub)

	Pulls data for z_owned_pull_subscriber_t. The pulled data will be provided
by calling the callback function provided to the z_declare_pull_subscriber() function.

	Parameters

	
	sub – A loaned instance of z_pull_subscriber_t from where to pull the data.

	Returns

	Returns 0 if the pull operation is successful, or a negative value otherwise.

	
z_queryable_options_t z_queryable_options_default(void)

	Constructs the default values for the queryable entity.

	Returns

	Returns the constructed z_queryable_options_t.

	
z_owned_queryable_t z_declare_queryable(z_session_t zs, z_keyexpr_t keyexpr, z_owned_closure_query_t *callback, const z_queryable_options_t *options)

	Declares a queryable for the given keyexpr.

Received queries are processed by means of callbacks.

Like most z_owned_X_t types, you may obtain an instance of z_owned_queryable_t by loaning it using
z_queryable_loan(&val). The z_loan(val) macro, available if your compiler supports C11’s _Generic, is
equivalent to writing z_queryable_loan(&val).

Like all z_owned_X_t, an instance will be destroyed by any function which takes a mutable pointer to said
instance, as this implies the instance’s inners were moved. To make this fact more obvious when reading your code,
consider using z_move(val) instead of &val as the argument. After a z_move, val will still exist, but
will no longer be valid. The destructors are double-drop-safe, but other functions will still trust that your val
is valid.

To check if val is still valid, you may use z_queryable_check(&val) or z_check(val) if your compiler
supports _Generic, which will return true if val is valid, or false otherwise.

	Parameters

	
	zs – A loaned instance of the the z_session_t where to declare the subscriber.

	keyexpr – A loaned instance of z_keyexpr_t to associate with the subscriber.

	callback – A moved instance of z_owned_closure_query_t containg the callbacks to be called and the context

to pass to them. options: The options to apply to the queryable. If NULL is passed, the default options will be
applied.

	Returns

	A z_owned_queryable_t with either a valid queryable or a failing queryable.
Should the queryable be invalid, z_check(val) ing the returned value will return false.

	
int8_t z_undeclare_queryable(z_owned_queryable_t *queryable)

	Undeclares the queryable generated by a call to z_declare_queryable().

	Parameters

	
	queryable – A moved instance of z_owned_queryable_t to undeclare.

	Returns

	Returns 0 if the undeclare queryable operation is successful, or a negative value otherwise.

	
int8_t z_query_reply(const z_query_t *query, const z_keyexpr_t keyexpr, const uint8_t *payload, size_t payload_len, const z_query_reply_options_t *options)

	Sends a reply to a query.

This function must be called inside of a z_owned_closure_query_t callback associated to the
z_owned_queryable_t, passing the received query as parameters of the callback function. This function can
be called multiple times to send multiple replies to a query. The reply will be considered complete when the callback
returns.

	Parameters

	
	query – Pointer to the received query.

	keyexpr – A loaned instance of z_keyexpr_t to associate with the subscriber.

	payload – Pointer to the data to put.

	payload_len – The length of the payload.

	options – The options to apply to the send query reply operation. If NULL is passed, the default options will be

applied.

	Returns

	Returns 0 if the send query reply operation is successful, or a negative value otherwise.

	
_Bool z_reply_is_ok(const z_owned_reply_t *reply)

	Checks if the queryable answered with an OK, which allows this value to be treated as a sample.

If this returns false, you should use z_check before trying to use z_reply_err() if you want to
process the error that may be here.

	Parameters

	
	reply – Pointer to the received query reply.

	Returns

	Returns true if the queryable answered with an OK, which allows this value to be treated as a sample, or

false otherwise.

	
z_sample_t z_reply_ok(const z_owned_reply_t *reply)

	Yields the contents of the reply by asserting it indicates a success.

You should always make sure that z_reply_is_ok() returns true before calling this function.

	Parameters

	
	reply – Pointer to the received query reply.

	Returns

	Returns the z_sample_t wrapped in the query reply.

	
z_value_t z_reply_err(const z_owned_reply_t *reply)

	Yields the contents of the reply by asserting it indicates a failure.

You should always make sure that z_reply_is_ok() returns false before calling this function.

	Parameters

	
	reply – Pointer to the received query reply.

	Returns

	Returns the z_value_t wrapped in the query reply.

	
zp_task_read_options_t zp_task_read_options_default(void)

	Multi Thread Taks helpers

Constructs the default values for the session read task.

	Returns

	Returns the constructed zp_task_read_options_t.

	
int8_t zp_start_read_task(z_session_t zs, const zp_task_read_options_t *options)

	Start a separate task to read from the network and process the messages as soon as they are received.

Note that the task can be implemented in form of thread, process, etc. and its implementation is platform-dependent.

	Parameters

	
	zs – A loaned instance of the the z_session_t where to start the read task.

	options – The options to apply when starting the read task. If NULL is passed, the default options will be

applied.

	Returns

	Returns 0 if the read task started successfully, or a negative value otherwise.

	
int8_t zp_stop_read_task(z_session_t zs)

	Stop the read task.

This may result in stopping a thread or a process depending on the target platform.

	Parameters

	
	zs – A loaned instance of the the z_session_t where to stop the read task.

	Returns

	Returns 0 if the read task stopped successfully, or a negative value otherwise.

	
zp_task_lease_options_t zp_task_lease_options_default(void)

	Constructs the default values for the session lease task.

	Returns

	Returns the constructed zp_task_lease_options_t.

	
int8_t zp_start_lease_task(z_session_t zs, const zp_task_lease_options_t *options)

	Start a separate task to handle the session lease.

This task will send KeepAlive messages when needed and will close the session when the lease is expired.
When operating over a multicast transport, it also periodically sends the Join messages.
Note that the task can be implemented in form of thread, process, etc. and its implementation is platform-dependent.

	Parameters

	
	zs – A loaned instance of the the z_session_t where to start the lease task.

	options – The options to apply when starting the lease task. If NULL is passed, the default options will be

applied.

	Returns

	Returns 0 if the lease task started successfully, or a negative value otherwise.

	
int8_t zp_stop_lease_task(z_session_t zs)

	Stop the lease task.

This may result in stopping a thread or a process depending on the target platform.

	Parameters

	
	zs – A loaned instance of the the z_session_t where to stop the lease task.

	Returns

	Returns 0 if the lease task stopped successfully, or a negative value otherwise.

	
zp_read_options_t zp_read_options_default(void)

	Single Thread helpers

Constructs the default values for the reading procedure.

	Returns

	Returns the constructed zp_read_options_t.

	
int8_t zp_read(z_session_t zs, const zp_read_options_t *options)

	Triggers a single execution of reading procedure from the network and processes of any received the message.

	Parameters

	
	zs – A loaned instance of the the z_session_t where trigger the reading procedure.

	options – The options to apply to the read. If NULL is passed, the default options will be

applied.

	Returns

	Returns 0 if the reading procedure was executed successfully, or a negative value otherwise.

	
zp_send_keep_alive_options_t zp_send_keep_alive_options_default(void)

	Constructs the default values for sending the keep alive.

	Returns

	Returns the constructed zp_send_keep_alive_options_t.

	
int8_t zp_send_keep_alive(z_session_t zs, const zp_send_keep_alive_options_t *options)

	Triggers a single execution of keep alive procedure.

It will send KeepAlive messages when needed and will close the session when the lease is expired.

	Parameters

	
	zs – A loaned instance of the the z_session_t where trigger the leasing procedure.

	options – The options to apply to the send of a KeepAlive messages. If NULL is passed, the default options

will be applied.

	Returns

	Returns 0 if the leasing procedure was executed successfully, or a negative value otherwise.

Index

 Z

Z

 	
 	z_bytes_t (C type)

 	z_bytes_t.len (C member)

 	z_bytes_t.start (C member)

 	z_check (C macro)

 	z_clone (C macro)

 	z_close (C function)

 	z_closure (C macro)

 	z_closure_hello (C function)

 	z_closure_query (C function)

 	z_closure_reply (C function)

 	z_closure_sample (C function)

 	z_closure_zid (C function)

 	z_config_default (C function)

 	z_config_new (C function)

 	z_config_t (C type)

 	z_congestion_control_t (C enum)

 	z_congestion_control_t.Z_CONGESTION_CONTROL_BLOCK (C enumerator)

 	z_congestion_control_t.Z_CONGESTION_CONTROL_DROP (C enumerator)

 	z_consolidation_mode_t (C enum)

 	z_consolidation_mode_t.Z_CONSOLIDATION_MODE_AUTO (C enumerator)

 	z_consolidation_mode_t.Z_CONSOLIDATION_MODE_LATEST (C enumerator)

 	z_consolidation_mode_t.Z_CONSOLIDATION_MODE_MONOTONIC (C enumerator)

 	z_consolidation_mode_t.Z_CONSOLIDATION_MODE_NONE (C enumerator)

 	z_declare_keyexpr (C function)

 	z_declare_publisher (C function)

 	z_declare_pull_subscriber (C function)

 	z_declare_queryable (C function)

 	z_declare_subscriber (C function)

 	z_delete (C function)

 	z_delete_options_default (C function)

 	z_delete_options_t (C type)

 	z_delete_options_t.congestion_control (C member)

 	z_delete_options_t.priority (C member)

 	z_drop (C macro)

 	z_encoding_default (C function)

 	z_encoding_prefix_t (C enum)

 	z_encoding_prefix_t.Z_ENCODING_PREFIX_APP_OCTET_STREAM (C enumerator)

 	z_encoding_prefix_t.Z_ENCODING_PREFIX_APP_SQL (C enumerator)

 	z_encoding_prefix_t.Z_ENCODING_PREFIX_APP_X_WWW_FORM_URLENCODED (C enumerator)

 	z_encoding_prefix_t.Z_ENCODING_PREFIX_APP_XHTML_XML (C enumerator)

 	z_encoding_prefix_t.Z_ENCODING_PREFIX_APP_XML (C enumerator)

 	z_encoding_prefix_t.Z_ENCODING_PREFIX_EMPTY (C enumerator)

 	z_encoding_prefix_t.Z_ENCODING_PREFIX_IMAGE_GIF (C enumerator)

 	z_encoding_prefix_t.Z_ENCODING_PREFIX_IMAGE_JPEG (C enumerator)

 	z_encoding_prefix_t.Z_ENCODING_PREFIX_IMAGE_PNG (C enumerator)

 	z_encoding_prefix_t.Z_ENCODING_PREFIX_TEXT_JAVASCRIPT (C enumerator)

 	z_encoding_prefix_t.Z_ENCODING_PREFIX_TEXT_PLAIN (C enumerator)

 	z_encoding_t (C type)

 	z_encoding_t.prefix (C member)

 	z_encoding_t.suffix (C member)

 	z_get (C function)

 	z_get_options_default (C function)

 	z_get_options_t (C type)

 	z_get_options_t.consolidation (C member)

 	z_get_options_t.target (C member)

 	z_get_options_t.value (C member)

 	z_hello_t (C type)

 	z_hello_t.locators (C member)

 	z_hello_t.whatami (C member)

 	z_hello_t.zid (C member)

 	z_id_t (C type)

 	z_id_t.id (C member)

 	z_info_peers_zid (C function)

 	z_info_routers_zid (C function)

 	z_info_zid (C function)

 	z_keyexpr (C function)

 	z_keyexpr_canonize (C function)

 	z_keyexpr_equals (C function)

 	z_keyexpr_includes (C function)

 	z_keyexpr_intersects (C function)

 	z_keyexpr_is_canon (C function)

 	z_keyexpr_is_initialized (C function)

 	z_keyexpr_t (C type)

 	z_keyexpr_to_string (C function)

 	z_loan (C macro)

 	z_move (C macro)

 	z_null (C macro)

 	z_open (C function)

 	z_owned_bytes_t (C type)

 	z_owned_closure_hello_t (C type)

 	z_owned_closure_hello_t.call (C member)

 	z_owned_closure_query_t (C type)

 	z_owned_closure_query_t.call (C member)

 	z_owned_closure_reply_t (C type)

 	z_owned_closure_reply_t.call (C member)

 	z_owned_closure_sample_t (C type)

 	z_owned_closure_sample_t.call (C member)

 	z_owned_closure_sample_t.context (C member)

 	z_owned_closure_sample_t.drop (C member)

 	z_owned_closure_zid_t (C type)

 	z_owned_closure_zid_t.call (C member)

 	z_owned_closure_zid_t.context (C member)

 	z_owned_closure_zid_t.drop (C member)

 	z_owned_config_t (C type)

 	z_owned_keyexpr_t (C type)

 	z_owned_publisher_t (C type)

 	z_owned_pull_subscriber_t (C type)

 	z_owned_queryable_t (C type)

 	z_owned_reply_t (C type)

 	z_owned_session_t (C type)

 	z_owned_str_array_t (C type)

 	z_owned_str_t (C type)

 	z_owned_subscriber_t (C type)

 	z_priority_t (C enum)

 	z_priority_t._Z_PRIORITY_CONTROL (C enumerator)

 	z_priority_t.Z_PRIORITY_BACKGROUND (C enumerator)

 	z_priority_t.Z_PRIORITY_DATA (C enumerator)

 	z_priority_t.Z_PRIORITY_DATA_HIGH (C enumerator)

 	z_priority_t.Z_PRIORITY_DATA_LOW (C enumerator)

 	z_priority_t.Z_PRIORITY_INTERACTIVE_HIGH (C enumerator)

 	z_priority_t.Z_PRIORITY_INTERACTIVE_LOW (C enumerator)

 	z_priority_t.Z_PRIORITY_REAL_TIME (C enumerator)

 	z_publisher_delete (C function)

 	z_publisher_delete_options_default (C function)

 	z_publisher_delete_options_t (C type)

 	z_publisher_options_default (C function)

 	z_publisher_options_t (C type)

 	z_publisher_options_t.congestion_control (C member)

 	z_publisher_put (C function)

 	z_publisher_put_options_default (C function)

 	z_publisher_put_options_t (C type)

 	
 	z_publisher_put_options_t.encoding (C member)

 	z_publisher_t (C type)

 	z_pull_subscriber_options_default (C function)

 	z_pull_subscriber_options_t (C type)

 	z_pull_subscriber_options_t.reliability (C member)

 	z_pull_subscriber_t (C type)

 	z_put (C function)

 	z_put_options_default (C function)

 	z_put_options_t (C type)

 	z_put_options_t.congestion_control (C member)

 	z_put_options_t.encoding (C member)

 	z_put_options_t.priority (C member)

 	z_query_consolidation_auto (C function)

 	z_query_consolidation_default (C function)

 	z_query_consolidation_latest (C function)

 	z_query_consolidation_monotonic (C function)

 	z_query_consolidation_none (C function)

 	z_query_consolidation_t (C type)

 	z_query_consolidation_t.mode (C member)

 	z_query_keyexpr (C function)

 	z_query_parameters (C function)

 	z_query_reply (C function)

 	z_query_reply_options_t (C type)

 	z_query_reply_options_t.encoding (C member)

 	z_query_target_default (C function)

 	z_query_target_t (C enum)

 	z_query_target_t.Z_QUERY_TARGET_ALL (C enumerator)

 	z_query_target_t.Z_QUERY_TARGET_ALL_COMPLETE (C enumerator)

 	z_query_target_t.Z_QUERY_TARGET_BEST_MATCHING (C enumerator)

 	z_query_value (C function)

 	z_queryable_options_default (C function)

 	z_queryable_options_t (C type)

 	z_queryable_options_t.complete (C member)

 	z_queryable_t (C type)

 	z_reliability_t (C enum)

 	z_reliability_t.Z_RELIABILITY_BEST_EFFORT (C enumerator)

 	z_reliability_t.Z_RELIABILITY_RELIABLE (C enumerator)

 	z_reply_data_t (C type)

 	z_reply_data_t.replier_id (C member)

 	z_reply_data_t.sample (C member)

 	z_reply_err (C function)

 	z_reply_is_ok (C function)

 	z_reply_ok (C function)

 	z_reply_t (C type)

 	z_reply_t.data (C member)

 	z_reply_tag_t (C enum)

 	z_reply_tag_t.Z_REPLY_TAG_DATA (C enumerator)

 	z_reply_tag_t.Z_REPLY_TAG_FINAL (C enumerator)

 	z_sample_kind_t (C enum)

 	z_sample_kind_t.Z_SAMPLE_KIND_DELETE (C enumerator)

 	z_sample_kind_t.Z_SAMPLE_KIND_PUT (C enumerator)

 	z_sample_t (C type)

 	z_sample_t.encoding (C member)

 	z_sample_t.keyexpr (C member)

 	z_sample_t.kind (C member)

 	z_sample_t.payload (C member)

 	z_sample_t.timestamp (C member)

 	z_scout (C function)

 	z_scouting_config_default (C function)

 	z_scouting_config_from (C function)

 	z_session_t (C type)

 	z_str_array_t (C type)

 	z_string_t (C type)

 	z_string_t.len (C member)

 	z_string_t.val (C member)

 	z_submode_t (C enum)

 	z_submode_t.Z_SUBMODE_PULL (C enumerator)

 	z_submode_t.Z_SUBMODE_PUSH (C enumerator)

 	z_subscriber_options_default (C function)

 	z_subscriber_options_t (C type)

 	z_subscriber_options_t.reliability (C member)

 	z_subscriber_pull (C function)

 	z_subscriber_t (C type)

 	z_undeclare_keyexpr (C function)

 	z_undeclare_publisher (C function)

 	z_undeclare_pull_subscriber (C function)

 	z_undeclare_queryable (C function)

 	z_undeclare_subscriber (C function)

 	z_value_is_initialized (C function)

 	z_value_t (C type)

 	z_value_t.encoding (C member)

 	z_value_t.payload (C member)

 	z_whatami_t (C enum)

 	z_whatami_t.Z_WHATAMI_CLIENT (C enumerator)

 	z_whatami_t.Z_WHATAMI_PEER (C enumerator)

 	z_whatami_t.Z_WHATAMI_ROUTER (C enumerator)

 	z_zint_t (C type)

 	zp_config_get (C function)

 	zp_config_insert (C function)

 	zp_keyexpr_canon_status_t (C enum)

 	zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_CONTAINS_SHARP_OR_QMARK (C enumerator)

 	zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_CONTAINS_UNBOUND_DOLLAR (C enumerator)

 	zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_DOLLAR_AFTER_DOLLAR_OR_STAR (C enumerator)

 	zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_DOUBLE_STAR_AFTER_DOUBLE_STAR (C enumerator)

 	zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_EMPTY_CHUNK (C enumerator)

 	zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_LONE_DOLLAR_STAR (C enumerator)

 	zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_SINGLE_STAR_AFTER_DOUBLE_STAR (C enumerator)

 	zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_STARS_IN_CHUNK (C enumerator)

 	zp_keyexpr_canon_status_t.Z_KEYEXPR_CANON_SUCCESS (C enumerator)

 	zp_keyexpr_canonize_null_terminated (C function)

 	zp_keyexpr_equals_null_terminated (C function)

 	zp_keyexpr_includes_null_terminated (C function)

 	zp_keyexpr_intersect_null_terminated (C function)

 	zp_keyexpr_is_canon_null_terminated (C function)

 	zp_keyexpr_resolve (C function)

 	zp_read (C function)

 	zp_read_options_default (C function)

 	zp_read_options_t (C type)

 	zp_scouting_config_get (C function)

 	zp_scouting_config_insert (C function)

 	zp_send_keep_alive (C function)

 	zp_send_keep_alive_options_default (C function)

 	zp_send_keep_alive_options_t (C type)

 	zp_start_lease_task (C function)

 	zp_start_read_task (C function)

 	zp_stop_lease_task (C function)

 	zp_stop_read_task (C function)

 	zp_task_lease_options_default (C function)

 	zp_task_lease_options_t (C type)

 	zp_task_read_options_default (C function)

 	zp_task_read_options_t (C type)

 nav.xhtml

 Table of Contents

 		
 zenoh-pico

 		
 API Reference

 		
 Zenoh Types

 		
 Enums

 		
 Data Structures

 		
 Arrays

 		
 Owned Types

 		
 Closures

 		
 Zenoh Functions

 		
 Macros

 		
 Primitives

_static/plus.png

_static/file.png

_static/minus.png

